Review of measures for improved energy efficiency in production-related processes in the aluminium industry – From electrolysis to recycling

The aluminium industry is facing a challenge in meeting the goal of halved greenhouse gas emissions by 2050, while the demand for aluminium is estimated to increase 2–3 times by the same year. Ener ...

[1]  H. Alamdari,et al.  Pressureless Sintering of TiB2‐based Composites using Ti and Fe Additives for Development of Wettable Cathodes , 2011 .

[2]  Cynthia Belt Current State of Aluminum Melting and Holding Furnaces in Industry , 2015 .

[3]  S. Garimella,et al.  Experimental Studies of the Impact of Anode Pre-heating , 2012 .

[4]  Natural gas anodes for aluminium electrolysis in molten fluorides. , 2016, Faraday discussions.

[5]  Ernst Worrell,et al.  Energy efficiency improvement and GHG abatement in the global production of primary aluminium , 2015 .

[6]  W. Haupin,et al.  Inert anodes for AI smelters: Energy balances and environmental impact , 2001 .

[7]  Hsien Hui Khoo,et al.  An LCA study of a primary aluminum supply chain , 2005 .

[8]  Wim Dewulf,et al.  Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation , 2014, Materials.

[9]  T. Tokarski,et al.  Recycling without Melting: An Alternative Approach to Aluminum Scrap Recovery , 2016 .

[10]  Jonathan M Cullen,et al.  Mapping the global flow of aluminum: from liquid aluminum to end-use goods. , 2013, Environmental science & technology.

[11]  Jin Hong Li,et al.  Research on Statistical Process Control for Aluminium Electrolysis Reduction , 2012 .

[13]  O. Ostrovski,et al.  Low-temperature Synthesis of Aluminium Carbide , 2011 .

[14]  Hans Petter Lange,et al.  Innovative Solutions to Sustainability in Hydro , 2013 .

[15]  J. Keniry The economics of inert anodes and wettable cathodes for aluminum reduction cells , 2001 .

[16]  Liu Wei,et al.  Development and Application of SAMI’s Low Voltage Energy-Saving Technology , 2012 .

[17]  T. Tzonev,et al.  Recovering aluminum from aluminum dross in a DC electric-arc rotary furnace , 2007 .

[18]  S. K. Kim,et al.  Simulation and Experimental Demonstration of a Large-Scale HTS AC Induction Furnace for Practical Design , 2016, IEEE Transactions on Applied Superconductivity.

[19]  Ioannis Paspaliaris,et al.  Energy and Exergy Analysis of the Primary Aluminum Production Processes: A Review on Current and Future Sustainability , 2011 .

[20]  Mohamed I. Hassan,et al.  Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces , 2014 .

[21]  M. Park,et al.  Economic Feasibility Study of an HTS DC Induction Furnace , 2016, IEEE Transactions on Applied Superconductivity.

[22]  Noel A. Warner,et al.  Conceptual Design for Lower-Energy Primary Aluminum , 2008 .

[23]  Reduction of Anode Effect Duration in 400kA Prebake Cells , 2011 .

[24]  P. Tsakiridis,et al.  Aluminium salt slag characterization and utilization--a review. , 2012, Journal of hazardous materials.

[25]  A. Agnihotri,et al.  Metal Instabilities and its Effect on Cell Performance during Aluminium Smelting , 2013 .

[26]  Zhan Lei,et al.  Towards Decreasing Energy Consumption of Aluminum Reduction by Using Anodes with Holes and Channels , 2014 .

[27]  Craig W. Brown,et al.  Next generation vertical electrode cells , 2001 .

[28]  Mark Jolly,et al.  Designing Novel CRIMSON Running System Through Numerical Simulation Method for the Purpose of Reducing the Energy Content of Aluminium Investment Casting , 2013 .

[29]  R. Pawlek Wettable Cathodes: An Update , 2016 .

[30]  J. H. Sokolowski,et al.  Energy Efficient Heat Treatment for Linerless Hypereutectic Al-Si Engine Blocks Made Using Vacuum HPDC Process , 2011 .

[31]  Stein O. Wasbø,et al.  A Nonlinear Model Based Control Strategy for the Aluminium Electrolysis Process , 2016 .

[32]  David Roth,et al.  Furnace Operations to Reduce Dross Generation , 2009 .

[33]  Carlos Augusto P. Braga,et al.  A dynamic state observer to control the energy consumption in aluminium production cells , 2016 .

[34]  J. Hryn,et al.  Aluminum Electrolysis in an Inert Anode Cell , 2014 .

[35]  Y. Zaikov,et al.  Liquidus Temperatures of Cryolite Melts With Low Cryolite Ratio , 2011 .

[36]  D. Sadoway Inert anodes for the Hall-Héroult cell: The ultimate materials challenge , 2001 .

[37]  D. Kocaefe,et al.  Effect of Heating Rate on the Crack Formation During Baking in Carbon Anodes Used in Aluminum Industry , 2014 .

[38]  Jirang Cui,et al.  Recycling of automotive aluminum , 2010 .

[39]  Mark Jolly,et al.  Energy Efficiency Improvement by Implementation of the Novel CRIMSON Aluminium Casting Process , 2011 .

[40]  M. Haase,et al.  Chip Extrusion with Integrated Equal Channel Angular Pressing , 2015 .

[41]  Pierre Reny,et al.  Hydro's Cell Technology Path Towards Specific Energy Consumption Below 12 KWH/KG , 2016 .

[42]  Branimir Lela,et al.  Model-based controlling of extrusion process , 2014 .

[43]  L. Roué,et al.  Anodic behavior of mechanically alloyed Cu–Ni–Fe and Cu–Ni–Fe–O electrodes for aluminum electrolysis in low-temperature KF-AlF3 electrolyte , 2013 .

[44]  S. M. Sadrameli,et al.  Theoretical and Experimental Studies of a Thermal Regenerator for Heat Recovery in Aluminum Melting Furnaces , 2015 .

[45]  T. Norgate,et al.  Assessing the environmental impact of metal production processes , 2007 .

[46]  Sharif Jahanshahi,et al.  Reducing the greenhouse gas footprint of primary metal production: Where should the focus be? , 2011 .

[47]  Dihua Wang,et al.  9 – Inert Anode Development for High-Temperature Molten Salts , 2013 .

[48]  M C Shinzato,et al.  Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. , 2005, Waste management.

[49]  K. Rajkumar,et al.  Microwave Heat Treatment on Aluminium 6061 Alloy-Boron Carbide Composites☆ , 2014 .

[51]  Y. M. Barzi,et al.  Evaluation of a Thermosyphon Heat Pipe Operation and Application in a Waste Heat Recovery System , 2015 .

[52]  Yang Tao,et al.  Technology & Equipment for Starting Up & Shutting Down Aluminium Pots under Full Amperage , 2011 .

[53]  Christoph Kemper,et al.  Thermodynamic analysis and experimental validation of carbothermically producing AlSi-alloy , 2013 .

[54]  Julian M. Allwood,et al.  Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors , 2011 .

[55]  Halvor Kvande,et al.  The Aluminum Smelting Process and Innovative Alternative Technologies , 2014, Journal of occupational and environmental medicine.

[56]  M. Dupuis,et al.  In Depth Analysis of Energy‐Saving and Current Efficiency Improvement of Aluminum Reduction Cells , 2003 .

[57]  Naijun Zhou,et al.  Combustion and energy balance of aluminum holding furnace with bottom porous brick purging system , 2012 .

[58]  Mohamed I. Hassan,et al.  CFD Comparison of Immersed Heater and Open Fire Burner Designs for Casting Furnaces , 2015 .

[59]  P. Tsakiridis,et al.  Aluminium recovery during black dross hydrothermal treatment , 2013 .

[60]  Gang Liu,et al.  Unearthing potentials for decarbonizing the U.S. aluminum cycle. , 2011, Environmental science & technology.

[61]  B. Monaghan,et al.  Corrosion of nickel ferrite refractory by Na3AlF6-AlF3-CaF2-Al2O3 bath , 2013 .

[62]  Louis Gosselin,et al.  Energy and exergy inventory in aluminum smelter from a thermal integration point‐of‐view , 2016 .

[63]  James Gordon Hemrick,et al.  Improved Furnace Efficiency through the Use of Refractory Materials , 2011 .

[64]  Liu Ming,et al.  New Generation Control for Daily Aluminium Smelter Improvement Generation 3 Process Control for Potlines , 2014 .

[65]  Larry E. Banta,et al.  Noise Classification in the Aluminum Reduction Process , 2016 .

[66]  João Paulo Lima de Miranda,et al.  Reduction of PFC Emissions at Pot Line 70 kA of Companhia Brasileira de Alumínio , 2011 .

[67]  Simone Zanoni,et al.  Greening the aluminium supply chain , 2007 .

[68]  J. Hryn,et al.  Recent Developments in Low-Temperature Electrolysis of Aluminum , 2013 .

[69]  Antonio Mario Locci,et al.  Energy efficiency during conventional and novel sintering processes: the case of Ti–Al2O3–TiC composites , 2009 .

[70]  Qudong Wang,et al.  Recycling of Aluminum Scrap by Severe Plastic Deformation , 2010 .

[71]  A. Alabin,et al.  Optimization of phase composition of Al–Cu–Mn–Zr–Sc alloys for rolled products without requirement for solution treatment and quenching , 2014 .

[72]  Ruijie Zhao,et al.  Reduced Ventilation of Upper Part of Aluminum Smelting Pot: Potential Benefits, Drawbacks, and Design Modifications , 2013 .

[73]  Louis Gosselin,et al.  An Overview of Opportunities for Waste Heat Recovery and Thermal Integration in the Primary Aluminum Industry , 2012 .

[74]  Y. Liu,et al.  Heating aging behavior of Al–8.35Zn–2.5Mg–2.25Cu alloy , 2014 .

[75]  Y. Lai,et al.  Anodic Corrosion Behavior of NiFe2O4-Based Cermet in Na3AlF6-K3AlF6-AlF3 for Aluminum Electrolysis , 2015, Metallurgical and Materials Transactions B.

[76]  I. Galasiu,et al.  Aluminium Electrolysis with Inert Anodes and Wettable Cathodes and with Low Energy Consumption , 2014 .

[77]  M. Balat-Pichelin,et al.  Production of metallic nanopowders (Mg, Al) by solar carbothermal reduction of their oxides at low pressure , 2016 .

[78]  T. Gutowski,et al.  Material efficiency: A white paper , 2011 .

[79]  Jorge Parrondo,et al.  Waste-to-energy technologies in continuous process industries , 2011, Clean Technologies and Environmental Policy.

[80]  A. Steinfeld,et al.  Solar Aluminum Production by Vacuum Carbothermal Reduction of Alumina—Thermodynamic and Experimental Analyses , 2011 .

[81]  M. Haase,et al.  Recycling of Aluminum Chips by Hot Extrusion with Subsequent Cold Extrusion , 2014 .

[82]  Xiaofei Sun,et al.  Electrochemical Behaviour of Carbon Anodes in Na3AlF6‐K3AlF6‐Based Low‐Melting Electrolytes for Aluminium Electrolysis , 2012 .

[83]  Y. Lai,et al.  Research progress in TiB2 wettable cathode for aluminum reduction , 2008 .

[84]  Sarah Broberg Viklund,et al.  Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction , 2014 .

[85]  Wenshu Yang,et al.  Effect of cooling aging on microstructure and mechanical properties of an Al–Zn–Mg–Cu alloy , 2014 .

[86]  J. Benedyk International Temper Designation Systems for Wrought Aluminum Alloys: Part II - Thermally Treated (T Temper) Aluminum Alloys , 2010 .

[87]  Y. Zaikov,et al.  Anodic behaviour of the Cu82Al8Ni5Fe5 alloy in low-temperature aluminium electrolysis , 2013 .

[88]  Andreas Buchholz,et al.  The Importance of Heat Removal for Productivity in Industrial Twin Roll Casting of Aluminium , 2015 .

[89]  T. Grande,et al.  Sodium Diffusion in Cathode Lining in Aluminium Electrolysis Cells , 2010 .