Superconvergence analysis of linear FEM based on the polynomial preserving recovery and Richardson extrapolation for Helmholtz equation with high wave number

We study superconvergence property of the linear finite element method with the polynomial preserving recovery (PPR) and Richardson extrapolation for the two dimensional Helmholtz equation. The $H^1$-error estimate with explicit dependence on the wave number $k$ {is} derived. First, we prove that under the assumption $k(kh)^2\leq C_0$ ($h$ is the mesh size) and certain mesh condition, the estimate between the finite element solution and the linear interpolation of the exact solution is superconvergent under the $H^1$-seminorm, although the pollution error still exists. Second, we prove a similar result for the recovered gradient by PPR and found that the PPR can only improve the interpolation error and has no effect on the pollution error. Furthermore, we estimate the error between the finite element gradient and recovered gradient and discovered that the pollution error is canceled between these two quantities. Finally, we apply the Richardson extrapolation to recovered gradient and demonstrate numerically that PPR combined with the Richardson extrapolation can reduce the interpolation and pollution errors simultaneously, and therefore, leads to an asymptotically exact {\it a posteriori} error estimator. All theoretical findings are verified by numerical tests.

[1]  Ivo Marek,et al.  Superconvergence results on mildly structured triangulations , 2000 .

[2]  Jens Markus Melenk,et al.  Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions , 2010, Math. Comput..

[3]  Isaac Harari,et al.  Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics , 1997 .

[4]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[5]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .

[6]  Lingxue Zhu,et al.  Preasymptotic Error Analysis of High Order Interior Penalty Discontinuous Galerkin Methods for the Helmholtz Equation with High Wave Number , 2016, J. Sci. Comput..

[7]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[8]  R. B. Kellogg,et al.  A scattering problem for the Helmholtz equation , 1979 .

[9]  Haijun Wu,et al.  Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version , 2014 .

[10]  Zhang,et al.  ASYMPTOTIC ERROR EXPANSION AND DEFECT CORRECTION FOR SOBOLEV AND VISCOELASTICITY TYPE EQUATIONS , 1998 .

[11]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[12]  Haijun Wu,et al.  Preasymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: hp Version , 2012, SIAM J. Numer. Anal..

[13]  Haijun Wu,et al.  Preasymptotic Error Analysis of Higher Order FEM and CIP-FEM for Helmholtz Equation with High Wave Number , 2014, SIAM J. Numer. Anal..

[14]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[15]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[16]  Haijun Wu,et al.  Linear continuous interior penalty finite element method for Helmholtz equation With High Wave Number: One‐Dimensional Analysis , 2012, 1211.1424.

[17]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..

[18]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[19]  Zhiming Chen,et al.  A Source Transfer Domain Decomposition Method for Helmholtz Equations in Unbounded Domain , 2013, SIAM J. Numer. Anal..

[20]  Junping Wang,et al.  Asymptotic expansions andL∞-error estimates for mixed finite element methods for second order elliptic problems , 1989 .

[21]  Bo Li,et al.  Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .

[22]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[23]  Zhang Zhi-min Asymptotic Error Expansion and Extrapolation for Finite Element , 2006 .

[24]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[25]  Jim Douglas,et al.  APPROXIMATION OF SCALAR WAVES IN THE SPACE-FREQUENCY DOMAIN , 1994 .

[26]  Ningning Yan,et al.  Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .

[27]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[28]  Zhimin Zhang,et al.  Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes? , 2007, SIAM J. Numer. Anal..

[29]  Ivo Babuska,et al.  Finite Element Solution to the Helmholtz Equation with High Wave Number Part II : The hp-version of the FEM , 2022 .

[30]  Jens Markus Melenk,et al.  General DG-Methods for Highly Indefinite Helmholtz Problems , 2013, J. Sci. Comput..

[31]  Yu Du,et al.  Pre-asymptotic error analysis of hp-interior penalty discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2015, Comput. Math. Appl..

[32]  Zhimin Zhang POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .

[33]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[34]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.