Differentiating the Multipoint Expected Improvement for Optimal Batch Design

[1]  C. Chevalier Fast uncertainty reduction strategies relying on Gaussian process models , 2013 .

[2]  David Ginsbourger,et al.  Fast Computation of the Multi-Points Expected Improvement with Applications in Batch Selection , 2013, LION.

[3]  Yves Deville,et al.  DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization , 2012 .

[4]  Andreas Krause,et al.  Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization , 2012, ICML.

[5]  S. Kakade,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2012, IEEE Transactions on Information Theory.

[6]  Ling Li,et al.  Sequential design of computer experiments for the estimation of a probability of failure , 2010, Statistics and Computing.

[7]  Jasjeet S. Sekhon,et al.  Genetic Optimization Using Derivatives , 2011, Political Analysis.

[8]  Adam D. Bull,et al.  Convergence Rates of Efficient Global Optimization Algorithms , 2011, J. Mach. Learn. Res..

[9]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[10]  E. Vázquez,et al.  Convergence properties of the expected improvement algorithm with fixed mean and covariance functions , 2007, 0712.3744.

[11]  Andy J. Keane,et al.  Learning and Intelligent Optimization, 4th International Conference, LION 4, Venice, Italy, January 18-22, 2010. Selected Papers , 2010, LION.

[12]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[13]  D. Ginsbourger,et al.  Towards Gaussian Process-based Optimization with Finite Time Horizon , 2010 .

[14]  D. Ginsbourger,et al.  Kriging is well-suited to parallelize optimization , 2010 .

[15]  Eric Walter,et al.  An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..

[16]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[17]  Warren B. Powell,et al.  A Knowledge-Gradient Policy for Sequential Information Collection , 2008, SIAM J. Control. Optim..

[18]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[19]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[20]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[21]  William J. Welch,et al.  Computer experiments and global optimization , 1997 .

[22]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[23]  S. Berman An extension of Plackett's differential equation for the multivariate normal density , 1987 .

[24]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .