Adaptive sampling for nonlinear dimensionality reduction based on manifold learning
暂无分享,去创建一个
[1] Andy J. Keane,et al. Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .
[2] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[3] Alexander P. Kuleshov,et al. Tangent Bundle Manifold Learning via Grassmann&Stiefel Eigenmaps , 2012, ArXiv.
[4] Thomas Franz,et al. Reduced-order modeling for steady transonic flows via manifold learning , 2015 .
[5] Norbert Kroll,et al. The DLR Flow Solver TAU - Status and Recent Algorithmic Developments , 2014 .
[6] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[7] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[8] R. Pinnau. Model Reduction via Proper Orthogonal Decomposition , 2008 .
[9] V. T. Rajan. Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..
[10] Forrester T. Johnson,et al. Modi cations and Clari cations for the Implementation of the Spalart-Allmaras Turbulence Model , 2011 .
[11] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[12] V. T. Rajan,et al. Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.
[13] Eric O. Postma,et al. Dimensionality Reduction: A Comparative Review , 2008 .
[14] Yoshua Bengio,et al. Exploring Strategies for Training Deep Neural Networks , 2009, J. Mach. Learn. Res..
[15] Lawrence Cayton,et al. Algorithms for manifold learning , 2005 .
[16] K. Willcox,et al. Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .
[17] M. Damodaran,et al. Proper Orthogonal Decomposition Extensions For Parametric Applications in Transonic Aerodynamics , 2003 .
[18] Jiri Blazek,et al. Computational Fluid Dynamics: Principles and Applications , 2001 .
[19] M. J. D. Powell,et al. Radial basis function methods for interpolation to functions of many variables , 2001, HERCMA.
[20] R. Zimmermann,et al. Interpolation-based reduced-order modelling for steady transonic flows via manifold learning , 2014 .
[21] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[22] Stefan Görtz,et al. Improved extrapolation of steady turbulent aerodynamics using a non-linear POD-based reduced order model , 2012, The Aeronautical Journal (1968).