Analysing the effects of combining fitness scaling and inversion in genetic algorithms

Genetic Algorithms in their original form as presented by Holland [10] included four operators selection, reproduction, mutation and inversion. Today most attention is given to selection, crossover and mutation, whereas inversion is rarely used. We compare the effectiveness of an inversion operator in a basic GA, and in a GA using fitness scaling. Results indicate that at higher levels of epistasis inversion is more useful in a basic GA than a GA with fitness scaling.

[1]  Riccardo Poli,et al.  Schema Theory for Genetic Programming with One-Point Crossover and Point Mutation , 1997, Evolutionary Computation.

[2]  W. Langdon,et al.  Genetic Programming with One-Point Crossover , 1998 .

[3]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[4]  M Ptashne,et al.  How gene activators work. , 1989, Scientific American.

[5]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[6]  L. Darrell Whitley,et al.  Using Reproductive Evaluation to Improve Genetic Search and Heuristic Discovery , 1987, ICGA.

[7]  Giles Mayley The Evolutionary Cost of Learning , 1996 .

[8]  D. E. Goldberg,et al.  An analysis of a reordering operator on a GA-hard problem , 1990, Biological Cybernetics.

[9]  Christopher R. Stephens,et al.  Effective Degrees of Freedom in Genetic Algorithms and the Block Hypothesis , 1997, ICGA.

[10]  John Daniel. Bagley,et al.  The behavior of adaptive systems which employ genetic and correlation algorithms : technical report , 1967 .

[11]  Thomas Bäck,et al.  Evolutionary Algorithms: The Role of Mutation and Recombination , 2000 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  David B. Fogel,et al.  Schema processing under proportional selection in the presence of random effects , 1997, IEEE Trans. Evol. Comput..

[14]  D. Wolpert,et al.  On 2-Armed Gaussian Bandits and Optimization , 1996 .

[15]  Kenneth A. De Jong,et al.  Using Genetic Algorithms to Solve NP-Complete Problems , 1989, ICGA.

[16]  Yuval Davidor,et al.  Epistasis Variance: A Viewpoint on GA-Hardness , 1990, FOGA.

[17]  Maja J. Matarić,et al.  The Evolutionary Cost of Learning , 1996 .

[18]  Lee Altenberg,et al.  The Schema Theorem and Price's Theorem , 1994, FOGA.

[19]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[20]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[21]  Bernard Manderick,et al.  Population Flow on Fitness Landscapes , 1994 .

[22]  David B. Fogel,et al.  The Schema Theorem and the Misallocation of Trials in the Presence of Stochastic Effects , 1998, Evolutionary Programming.

[23]  Willfried Wienholt,et al.  A Refined Genetic Algorithm for Parameter Optimization Problems , 1993, ICGA.

[24]  Christopher R. Stephens,et al.  Schemata Evolution and Building Blocks , 1999, Evolutionary Computation.

[25]  Daniel Raymond Frantz,et al.  Nonlinearities in genetic adaptive search. , 1972 .