Cross-Modal Data Programming Enables Rapid Medical Machine Learning

[1]  Mohammad Mansouri,et al.  An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets , 2018, Nature Biomedical Engineering.

[2]  Ronald M. Summers,et al.  ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases , 2019, Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics.

[3]  Nigam H. Shah,et al.  Learning statistical models of phenotypes using noisy labeled training data , 2016, J. Am. Medical Informatics Assoc..

[4]  Kaiming He,et al.  Exploring the Limits of Weakly Supervised Pretraining , 2018, ECCV.

[5]  Max Welling,et al.  Attention-based Deep Multiple Instance Learning , 2018, ICML.

[6]  Alan R. Aronson,et al.  Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program , 2001, AMIA.

[7]  Jianbin Tang,et al.  SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification , 2019, MLCN/RNO-AI@MICCAI.

[8]  R. Preston McAfee,et al.  Who moderates the moderators?: crowdsourcing abuse detection in user-generated content , 2011, EC '11.

[9]  J. Sengupta The Nonparametric Approach , 1989 .

[10]  Christopher Ré,et al.  Snorkel: Rapid Training Data Creation with Weak Supervision , 2017, Proc. VLDB Endow..

[11]  Navalgund Rao,et al.  Deep 3D convolution neural network for CT brain hemorrhage classification , 2018, Medical Imaging.

[12]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[13]  Jiajun Wu,et al.  Deep multiple instance learning for image classification and auto-annotation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Joseph Picone,et al.  The Temple University Hospital EEG Data Corpus , 2016, Front. Neurosci..

[16]  A. Ng,et al.  Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists , 2018, PLoS medicine.

[17]  Christopher Ré,et al.  Learning the Structure of Generative Models without Labeled Data , 2017, ICML.

[18]  Christopher De Sa,et al.  Data Programming: Creating Large Training Sets, Quickly , 2016, NIPS.

[19]  T. Eichele,et al.  Visual EEG reviewing times with SCORE EEG , 2018, Clinical neurophysiology practice.

[20]  Dmitrii Bychkov,et al.  Deep learning based tissue analysis predicts outcome in colorectal cancer , 2018, Scientific Reports.

[21]  Jared A. Dunnmon,et al.  Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs. , 2019, Radiology.

[22]  Danqi Chen,et al.  Position-aware Attention and Supervised Data Improve Slot Filling , 2017, EMNLP.

[23]  David Sontag,et al.  Using Anchors to Estimate Clinical State without Labeled Data , 2014, AMIA.

[24]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[25]  Andre Esteva,et al.  A guide to deep learning in healthcare , 2019, Nature Medicine.

[26]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[27]  Chen Liang,et al.  Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision , 2016, ACL.

[28]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Subhashini Venugopalan,et al.  Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. , 2016, JAMA.

[30]  Zhiyong Lu,et al.  DNorm: disease name normalization with pairwise learning to rank , 2013, Bioinform..

[31]  Subhrajit Roy,et al.  ChronoNet: A Deep Recurrent Neural Network for Abnormal EEG Identification , 2018, AIME.

[32]  J. Saver Time Is Brain—Quantified , 2006, Stroke.

[33]  Tiago H. Falk,et al.  Deep learning-based electroencephalography analysis: a systematic review , 2019, Journal of neural engineering.

[34]  U. Rajendra Acharya,et al.  Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals , 2017, Comput. Biol. Medicine.

[35]  Wei Shi,et al.  Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification , 2016, ACL.

[36]  A. Ng,et al.  MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs. , 2017 .

[37]  Chen Sun,et al.  Revisiting Unreasonable Effectiveness of Data in Deep Learning Era , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[38]  Yifan Yu,et al.  CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison , 2019, AAAI.

[39]  Ce Zhang,et al.  Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features , 2016, Nature Communications.

[40]  Marcus A. Badgeley,et al.  Automated deep-neural-network surveillance of cranial images for acute neurologic events , 2018, Nature Medicine.

[41]  H. Nagaraja,et al.  A Nonparametric Approach , 2017 .

[42]  Mark Craven,et al.  Constructing Biological Knowledge Bases by Extracting Information from Text Sources , 1999, ISMB.

[43]  Frederic Sala,et al.  Training Complex Models with Multi-Task Weak Supervision , 2018, AAAI.

[44]  Doug Downey,et al.  Web-scale information extraction in knowitall: (preliminary results) , 2004, WWW '04.

[45]  Sasank Chilamkurthy,et al.  Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study , 2018, The Lancet.

[46]  Christopher Ré,et al.  Large-scale extraction of gene interactions from full-text literature using DeepDive , 2015, Bioinform..

[47]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[48]  Stephen H. Bach,et al.  Snorkel: rapid training data creation with weak supervision , 2019, The VLDB Journal.

[49]  Zhipeng Jia,et al.  Constrained Deep Weak Supervision for Histopathology Image Segmentation , 2017, IEEE Transactions on Medical Imaging.

[50]  Ronald M. Summers,et al.  NegBio: a high-performance tool for negation and uncertainty detection in radiology reports , 2017, AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science.

[51]  Matthieu Cord,et al.  WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Jaap Kamps,et al.  Learning to Learn from Weak Supervision by Full Supervision , 2017, ArXiv.

[53]  W. Bruce Croft,et al.  Neural Ranking Models with Weak Supervision , 2017, SIGIR.

[54]  A. P. Dawid,et al.  Maximum Likelihood Estimation of Observer Error‐Rates Using the EM Algorithm , 1979 .

[55]  Vinod Pangracious,et al.  A review of feature extraction for EEG epileptic seizure detection and classification , 2017, 2017 40th International Conference on Telecommunications and Signal Processing (TSP).

[56]  Geoffrey E. Hinton,et al.  Learning to Label Aerial Images from Noisy Data , 2012, ICML.

[57]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Jie Xu,et al.  The practical implementation of artificial intelligence technologies in medicine , 2019, Nature Medicine.

[59]  Jia Deng,et al.  A large-scale hierarchical image database , 2009, CVPR 2009.

[60]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[61]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[62]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[63]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[65]  I. Cowan,et al.  Measuring and managing radiologist workload: Measuring radiologist reporting times using data from a Radiology Information System , 2013, Journal of medical imaging and radiation oncology.

[66]  Marcus A. Badgeley,et al.  Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports. , 2018, Radiology.

[67]  Anirban Dasgupta,et al.  Aggregating crowdsourced binary ratings , 2013, WWW.

[68]  Christopher Ré,et al.  Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale , 2018, SIGMOD Conference.

[69]  Chao Lu,et al.  Retrospective study , 2016, Medicine.