Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains

BackgroundFrancisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans.ResultsComparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation.ConclusionThe chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.

[1]  Ran Blekhman,et al.  The "domino theory" of gene death: gradual and mass gene extinction events in three lineages of obligate symbiotic bacterial pathogens. , 2006, Molecular biology and evolution.

[2]  B. Jaurin,et al.  Identification of Francisella species and discrimination of type A and type B strains of F. tularensis by 16S rRNA analysis , 1990, Applied and environmental microbiology.

[3]  Martin Ester,et al.  Sequence analysis PSORTb v . 2 . 0 : Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis , 2004 .

[4]  Jeffrey R. Barker,et al.  MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Petersen,et al.  Characterization of a novicida-like subspecies of Francisella tularensis isolated in Australia. , 2003, Journal of medical microbiology.

[6]  B. Finlay,et al.  Pathogenic trickery: deception of host cell processes , 2001, Nature Reviews Molecular Cell Biology.

[7]  K. Klose,et al.  Francisella tularensis travels a novel, twisted road within macrophages. , 2006, Trends in microbiology.

[8]  F. Rodríguez-Valera,et al.  The Neolithic revolution of bacterial genomes. , 2006, Trends in microbiology.

[9]  G. Sandström,et al.  Characterization of two unusual clinically significant Francisella strains , 1996, Journal of clinical microbiology.

[10]  M. Molmeret,et al.  Modulation of biogenesis of the Francisella tularensis subsp. novicida‐containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN‐γ , 2005, Cellular microbiology.

[11]  Na Zhang,et al.  A Francisella tularensis Pathogenicity Island Required for Intramacrophage Growth , 2004, Journal of bacteriology.

[12]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[13]  C. Desmarais,et al.  Automated finishing with autofinish. , 2001, Genome research.

[14]  J. Hacker,et al.  Pathogenicity islands and the evolution of microbes. , 2000, Annual review of microbiology.

[15]  M. Hornef,et al.  Bacterial strategies for overcoming host innate and adaptive immune responses , 2002, Nature Immunology.

[16]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[17]  C. Bloch,et al.  "Black holes" and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. W. Moss,et al.  Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease , 1989, Journal of clinical microbiology.

[19]  K. Gerdes,et al.  Prokaryotic toxin–antitoxin stress response loci , 2005, Nature Reviews Microbiology.

[20]  J. Butterton,et al.  Spontaneous tandem amplification and deletion of the Shiga toxin operon in Shigella dysenteriae 1 , 1999, Molecular microbiology.

[21]  H. Ochman,et al.  Ψ-Φ: Exploring the outer limits of bacterial pseudogenes , 2004 .

[22]  K. Konstantinidis,et al.  Genomic insights that advance the species definition for prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Andrew K. Benson,et al.  Paired-End Sequence Mapping Detects Extensive Genomic Rearrangement and Translocation during Divergence of Francisella tularensis subsp. tularensis and Francisella tularensis subsp. holarctica Populations , 2006, Journal of bacteriology.

[24]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[25]  Howard Ochman,et al.  Pathogenicity Islands: Bacterial Evolution in Quantum Leaps , 1996, Cell.

[26]  I. Golovliov,et al.  Expression of IglC is necessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis. , 2004, Microbial pathogenesis.

[27]  Kenneth D. Clinkenbeard,et al.  Chromosome Rearrangement and Diversification of Francisella tularensis Revealed by the Type B (OSU18) Genome Sequence , 2006, Journal of bacteriology.

[28]  A. Sjöstedt,et al.  Discrimination of Human Pathogenic Subspecies of Francisella tularensis by Using Restriction Fragment Length Polymorphism , 2003, Journal of Clinical Microbiology.

[29]  Paul Keim,et al.  Francisella tularensis Strain Typing Using Multiple-Locus, Variable-Number Tandem Repeat Analysis , 2001, Journal of Clinical Microbiology.

[30]  B. Barrell,et al.  Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica , 2003, Nature Genetics.

[31]  C. Antignac,et al.  The Targeting of Cystinosin to the Lysosomal Membrane Requires a Tyrosine-based Signal and a Novel Sorting Motif* , 2001, The Journal of Biological Chemistry.

[32]  Samuel I. Miller,et al.  Potential Source of Francisella tularensis Live Vaccine Strain Attenuation Determined by Genome Comparison , 2006, Infection and Immunity.

[33]  M. Forsman,et al.  Evolution of Subspecies of Francisella tularensis , 2005, Journal of bacteriology.

[34]  Emmanuelle Lerat,et al.  Recognizing the pseudogenes in bacterial genomes , 2005, Nucleic acids research.

[35]  M. Telepnev,et al.  Factors affecting the escape of Francisella tularensis from the phagolysosome. , 2004, Journal of medical microbiology.

[36]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[37]  Geoffrey J. Barton,et al.  GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes , 2004, BMC Bioinformatics.

[38]  Samuel I. Miller,et al.  Type IV pili‐mediated secretion modulates Francisella virulence , 2006, Molecular microbiology.

[39]  L. Wieler,et al.  Impact of the locus of enterocyte effacement pathogenicity island on the evolution of pathogenic Escherichia coli. , 2004, International journal of medical microbiology : IJMM.

[40]  W. Jellison,et al.  A new organism resembling P. tularensis isolated from water. , 1955, Public health reports.

[41]  H. Ochman,et al.  The Nature and Dynamics of Bacterial Genomes , 2006, Science.

[42]  R. Grunow,et al.  Population Structure of Francisella tularensis , 2006, Journal of bacteriology.

[43]  J. Gunn,et al.  Characterization of the lipopolysaccharide O-antigen of Francisella novicida (U112). , 2004, Carbohydrate research.

[44]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[45]  Patricia Siguier,et al.  ISfinder: the reference centre for bacterial insertion sequences , 2005, Nucleic Acids Res..

[46]  N. Moran,et al.  Genomic changes following host restriction in bacteria. , 2004, Current opinion in genetics & development.

[47]  Rekha R Meyer,et al.  Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid , 2004, Nature Genetics.

[48]  Jie Dong,et al.  Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery , 2005, Nucleic acids research.

[49]  J. Lake,et al.  Genomic evidence for two functionally distinct gene classes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Hadfield,et al.  Genotyping of Francisella tularensis Strains by Pulsed-Field Gel Electrophoresis, Amplified Fragment Length Polymorphism Fingerprinting, and 16S rRNA Gene Sequencing , 2002, Journal of Clinical Microbiology.

[51]  Martha B. Furie,et al.  Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence , 2006, Proceedings of the National Academy of Sciences.

[52]  H. Ochman,et al.  Psi-Phi: exploring the outer limits of bacterial pseudogenes. , 2004, Genome research.

[53]  Richard A. Moore,et al.  Contribution of Gene Loss to the Pathogenic Evolution of Burkholderia pseudomallei and Burkholderia mallei , 2004, Infection and Immunity.

[54]  A. Sjöstedt Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. , 2006, Microbes and infection.

[55]  David S. Weiss,et al.  Identification of MglA-Regulated Genes Reveals Novel Virulence Factors in Francisella tularensis , 2006, Infection and Immunity.

[56]  Jeff F. Miller,et al.  Hypervirulence and pathogen fitness. , 2003, Trends in microbiology.

[57]  Lukas Wagner,et al.  A Greedy Algorithm for Aligning DNA Sequences , 2000, J. Comput. Biol..

[58]  Gary L. Andersen,et al.  Complete Genome Sequence of Yersinia pestis Strains Antiqua and Nepal516: Evidence of Gene Reduction in an Emerging Pathogen , 2006, Journal of bacteriology.

[59]  G. Van den Ackerveken,et al.  Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. , 2001, The Plant journal : for cell and molecular biology.

[60]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[61]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[62]  A. Sjöstedt,et al.  Worldwide Genetic Relationships among Francisella tularensis Isolates Determined by Multiple-Locus Variable-Number Tandem Repeat Analysis , 2004, Journal of bacteriology.

[63]  Jeremy Buhler,et al.  Operon prediction without a training set , 2005, Bioinform..

[64]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[65]  J. Celli,et al.  Construction and Characterization of an Attenuated Purine Auxotroph in a Francisella tularensis Live Vaccine Strain , 2006, Infection and Immunity.

[66]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[67]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[68]  J. R. Lobry,et al.  Oriloc: prediction of replication boundaries in unannotated bacterial chromosomes , 2000, Bioinform..

[69]  S M Payne,et al.  Complete Genome Sequence and Comparative Genomics of Shigella flexneri Serotype 2a Strain 2457T , 2003, Infection and Immunity.

[70]  J A Eisen,et al.  The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58 , 2001, Science.

[71]  Anders Sjöstedt,et al.  The complete genome sequence of Francisella tularensis, the causative agent of tularemia , 2005, Nature Genetics.

[72]  Richard W. Titball,et al.  Genome-Wide DNA Microarray Analysis of Francisella tularensis Strains Demonstrates Extensive Genetic Conservation within the Species but Identifies Regions That Are Unique to the Highly Virulent F. tularensis subsp. tularensis , 2003, Journal of Clinical Microbiology.

[73]  R. Kaul,et al.  Complete Genome Sequence of the Genetically Tractable Hydrogenotrophic Methanogen Methanococcus maripaludis , 2004, Journal of bacteriology.

[74]  Samuel V. Angiuoli,et al.  Insights on Evolution of Virulence and Resistance from the Complete Genome Analysis of an Early Methicillin-Resistant Staphylococcus aureus Strain and a Biofilm-Producing Methicillin-Resistant Staphylococcus epidermidis Strain , 2005, Journal of bacteriology.