A 0.32V, 55fJ per bit access energy, CMOS 65nm bit-interleaved SRAM with radiation Soft Error tolerance

A 32kb memory is presented with an Ultra Low Voltage optimized 10 transistors bitcell designed to withstand an extended voltage range from 1.2V down to 0.35V, achieving 1.77pJ low energy access. A validation circuit was fabricated in 65nm CMOS and exhibits wafer level yield above 95% at 0.4V, 1MHz. Packaged parts show 0.32V minimum voltage at 490kHz and up to 17X energy gain per operation. The memory terrestrial radiation Soft Error Rate was characterized with no multibit errors reported, enabling future medical appplications radiation reliability through bit-interleaving combined with error correcting code.

[1]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[2]  Saibal Mukhopadhyay,et al.  Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits , 2003, Proc. IEEE.

[3]  Naveen Verma,et al.  A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[4]  M. Sharifkhani,et al.  SRAM Cell Stability: A Dynamic Perspective , 2009, IEEE Journal of Solid-State Circuits.

[5]  Gilles Sicard,et al.  A 40nm CMOS, 1.27nJ, 330mV, 600kHz, Bose Chaudhuri Hocquenghem 252 bits frame decoder , 2010, 2010 IEEE International Conference on Integrated Circuit Design and Technology.

[6]  Kaushik Roy,et al.  Ultralow-Voltage Process-Variation-Tolerant Schmitt-Trigger-Based SRAM Design , 2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[7]  Kaushik Roy,et al.  Process variation tolerant SRAM array for ultra low voltage applications , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[8]  Kaushik Roy,et al.  A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  Michael Nicolaidis,et al.  Soft Errors in Modern Electronic Systems , 2010 .

[10]  Jiajing Wang,et al.  Analyzing static and dynamic write margin for nanometer SRAMs , 2008, Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08).

[11]  Masanori Hashimoto,et al.  Alpha-particle-induced soft errors and multiple cell upsets in 65-nm 10T subthreshold SRAM , 2010, 2010 IEEE International Reliability Physics Symposium.

[12]  Wim Dehaene,et al.  A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, ultra low leakage power memory using dynamic cell stability and a dual swing data link , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[13]  David Blaauw,et al.  A 1.85fW/bit ultra low leakage 10T SRAM with speed compensation scheme , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[14]  J. Fellrath,et al.  CMOS analog integrated circuits based on weak inversion operations , 1977 .