A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis

Using the combined Golgi-electron microscopy technique, we have determined the three-dimensional dendritic fields of the short visual fibres (svf 1–3) and first-order interneurons or L-fibres (L1-4) within the first optic ganglion (lamina) of the nocturnal bee Megalopta genalis. Serial cross sections have revealed that the svf type 2 branches into one adjacent neural unit (cartridge) in layer A, the most distal of the three lamina layers A, B and C. All L-fibres, except L1-a, exhibit wide lateral branching into several neighbouring cartridges. L1-b shows a dendritic field of seven cartridges in layers A and C, dendrites of L2 target 13 cartridges in layer A, L3 branches over a total of 12 cartridges in layer A and three in layer C and L4 has the largest dendritic field size of 18 cartridges in layer C. The number of cartridges reached by the respective L-fibres is distinctly greater in the nocturnal bee than in the worker honeybee and is larger than could be estimated from our previous Golgi-light microscopy study. The extreme dorso-ventrally oriented dendritic field of L4 in M. genalis may, in addition to its potential role in spatial summation, be involved in edge detection. Thus, we have shown that the amount of lateral spreading present in the lamina provides the anatomical basis for the required spatial summation. Theoretical and future physiological work should further elucidate the roles that this lateral spreading plays to improve dim-light vision in nocturnal insects.

[1]  W. Ribi Anatomical identification of spectral receptor types in the retina and lamina of the Australian orchard butterfly, Papilio aegeus aegeus D. , 2004, Cell and Tissue Research.

[2]  D. Roubik,et al.  Ecology and natural history of tropical bees: Extant families, subfamilies, tribes, genera, and subgenera of the Apoidea: a partial checklist , 1989 .

[3]  Eric J. Warrant,et al.  Arthropod eye design and the physical limits to spatial resolving power , 1993, Progress in Neurobiology.

[4]  E. Warrant Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.

[5]  R. Menzel,et al.  Colour receptors in the bee eye — Morphology and spectral sensitivity , 1976, Journal of comparative physiology.

[6]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.

[7]  D. M. Burgett,et al.  Flight activity of Xylocopa (Nyctomelitta) tranquebarica: a night flying carpenter bee (Hymenoptera: Apidae) , 2000 .

[8]  Eric J. Warrant,et al.  Scotopic colour vision in nocturnal hawkmoths , 2002, Nature.

[9]  Eric J. Warrant,et al.  Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis , 2004, Cell and Tissue Research.

[10]  W. Ribi The first optic ganglion of the bee , 1976, Cell and Tissue Research.

[11]  Eric J. Warrant,et al.  Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis , 2004, Cell and Tissue Research.

[12]  Dan-Eric Nilsson,et al.  Optics and Evolution of the Compound Eye , 1989 .

[13]  D. Waters Bats and moths: what is there left to learn? , 2003 .

[14]  Victor H. Gonzalez,et al.  The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): an escape from competitors and enemies? , 2004 .

[15]  J. Lythgoe The Ecology of vision , 1979 .

[16]  W. Ribi,et al.  The Structural Basis of Information Processing in the Visual System of the Bee , 1987 .

[17]  W. Kerfoot The lunar periodicity of Sphecodogastra texana, a nocturnal bee (Hymenoptera: Halictidae). , 1967, Animal behaviour.

[18]  Randolf Menzel,et al.  Neurobiology and Behavior of Honeybees , 1987, Springer Berlin Heidelberg.

[19]  W. Ribi Electron Microscopy of Golgi-Impregnated Neurons , 1983 .

[20]  Georges Thinès Vision in Invertebrates Handbook of sensory physiology. H. Autrum, editor. vol. VII/6 C. Berlin, Heidelberg, New-York, Springer Verlag, 1981. ISBN: 3-540-10422-4 and 0-387-10422-4. , 1986, Behavioural Processes.

[21]  Eric J. Warrant,et al.  Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee , 2004, Current Biology.

[22]  Eric J. Warrant,et al.  Neural Image Enhancement Allows Honeybees to See at Night , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  T. Cockerell Two Nocturnal Bees and a Minute Perdita , 1923 .

[24]  Eric Warrant,et al.  Vision in the dimmest habitats on Earth , 2004, Journal of Comparative Physiology A.

[25]  Michael F. Land,et al.  Optics and Vision in Invertebrates , 1981 .

[26]  M. Sanders Handbook of Sensory Physiology , 1975 .

[27]  R. Menzel Spectral sensitivity of monopolar cells in the bee lamina , 1974, Journal of comparative physiology.

[28]  R. Hardie,et al.  Facets of Vision , 1989, Springer Berlin Heidelberg.

[29]  R. Menzel,et al.  Chromatic properties of interneurons in the optic lobes of the bee , 2004, Journal of comparative physiology.

[30]  T. Cronin,et al.  Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae) , 2000, Journal of Comparative Physiology A.