Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online sho ...

[1]  Van Overbeek On-Line Structure Selection for the Identification of Multivariable Systems , 1982 .

[2]  D. Spiegelhalter Incorporating Bayesian Ideas into Health-Care Evaluation , 2004 .

[3]  Johan Dahlin,et al.  Particle metropolis hastings using Langevin dynamics , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[4]  R. Everson,et al.  Robust Autoregression: Student-t Innovations Using Variational Bayes , 2011, IEEE Transactions on Signal Processing.

[5]  Predrag Pucar Modeling and Segmentation using Multiple Models , 1995 .

[6]  Fredrik Lindsten,et al.  Adaptive stopping for fast particle smoothing , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Christian P. Robert,et al.  Introducing Monte Carlo Methods with R , 2009 .

[8]  Hao Zhou Modified Backward Sampling Smoothing with EM algorithm-Application to Economics and Finance , 2012 .

[9]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .

[10]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[11]  Thomas B. Schön,et al.  Online sparse Gaussian process regression using FITC and PITC approximations , 2015 .

[12]  Jonas Callmer,et al.  Autonomous Localization in Unknown Environments , 2013 .

[13]  V. Spokoiny,et al.  Finite Sample Bernstein -- von Mises Theorem for Semiparametric Problems , 2013, 1310.7796.

[14]  Jonas Elbornsson,et al.  Analysis, Estimation and Compensation of Mismatch Effects in A/D Converters , 2003 .

[15]  Anders Ynnerman,et al.  Temporally and spatially varying image based lighting using HDR-video , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[16]  Anders Helmersson,et al.  Methods for robust gain scheduling , 1995 .

[17]  G. Peters,et al.  Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC) , 2010, 1005.2238.

[18]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[19]  N. Whiteley Stability properties of some particle filters , 2011, 1109.6779.

[20]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[21]  R. Handel,et al.  Can local particle filters beat the curse of dimensionality , 2013, 1301.6585.

[22]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[23]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[24]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[25]  J. Sjöberg Optimal Control and Model Reduction of Nonlinear DAE Models , 2008 .

[26]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[27]  Yichuan Zhang,et al.  Quasi-Newton Methods for Markov Chain Monte Carlo , 2011, NIPS.

[28]  David Törnqvist,et al.  Estimation and Detection with Applications to Navigation , 2008 .

[29]  Stoyan V. Stoyanov,et al.  An Empirical Examination of Daily Stock Return Distributions for U.S. Stocks , 2005, Data Analysis and Decision Support.

[30]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[31]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[32]  Anthony Lee,et al.  Parallel Resampling in the Particle Filter , 2013, 1301.4019.

[33]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[34]  Urban Forssell Closed-loop Identification : Methods, Theory, and Applications , 1999 .

[35]  Erik Wernholt,et al.  Multivariable Frequency-Domain Identification of Industrial Robots , 2007 .

[36]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[37]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[38]  Jonathan R. Partington,et al.  On linear models for nonlinear systems , 2003, Autom..

[39]  M. Pitt,et al.  Importance Sampling Squared for Bayesian Inference in Latent Variable Models , 2013, 1309.3339.

[40]  Inference in Gaussian models with missing data using Equalisation Maximisation , 2013, 1308.4601.

[41]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[42]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[43]  Wolfgang Heidrich,et al.  Sequential Sampling for Dynamic Environment Map Illumination , 2022 .

[44]  K. Edström Switched Bond Graphs : Simulation and Analysis , 1999 .

[45]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[46]  Thomas B. Schön,et al.  Estimation of Nonlinear Dynamic Systems : Theory and Applications , 2006 .

[47]  G. Matheron Principles of geostatistics , 1963 .

[48]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[49]  B. Wahlberg On the Identification and Approximation of Linear Systems , 1987 .

[50]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[51]  Genshiro Kitagawa,et al.  Monte Carlo Smoothing and Self-Organising State-Space Model , 2001, Sequential Monte Carlo Methods in Practice.

[52]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[53]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[54]  L. Einkemmer Quasi-Monte Carlo methods , 2010 .

[55]  G. Choe Numerical Solution of Stochastic Differential Equations , 2016 .

[56]  Fredrik Tjärnström,et al.  Variance Expressions and Model Reduction in System Identification , 2002 .

[57]  O. Cappé,et al.  Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models , 2006, math/0609514.

[58]  Lawrence M. Murray Bayesian State-Space Modelling on High-Performance Hardware Using LibBi , 2013, 1306.3277.

[59]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[60]  J. Gunnarsson Symbolic Methods and Tools for Discrete Event Dynamic Systems , 1997 .

[61]  Christian Lyzell,et al.  Structural Reformulations in System Identification , 2012 .

[62]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[63]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[64]  Karl Henrik Johansson,et al.  Cooperative Look-Ahead Control for Fuel-Efficient and Safe Heavy-Duty Vehicle Platooning , 2015, IEEE Transactions on Control Systems Technology.

[65]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[66]  Anthony Lee,et al.  Towards smooth particle filters for likelihood estimation with multivariate latent variables , 2008 .

[67]  J. Spall A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates , 1987, 1987 American Control Conference.

[68]  Claire Monteleoni,et al.  Tracking climate models , 2011, CIDU.

[69]  R. Gnanadesikan,et al.  Probability plotting methods for the analysis of data. , 1968, Biometrika.

[70]  Johan Dahlin,et al.  Quasi-Newton particle Metropolis-Hastings , 2015, 1502.03656.

[71]  Daniel Ankelhed,et al.  On design of low order H-infinity controllers , 2011 .

[72]  Yehuda Koren,et al.  The BellKor Solution to the Netflix Grand Prize , 2009 .

[73]  Michael I. Jordan,et al.  Phylogenetic Inference via Sequential Monte Carlo , 2012, Systematic biology.

[74]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[75]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[76]  Fredrik Lindsten,et al.  Nested Sequential Monte Carlo Methods , 2015, ICML.

[77]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[78]  Johan Dahlin,et al.  Second-order particle MCMC for Bayesian parameter inference , 2013 .

[79]  Csaba Kelemen,et al.  Simple and Robust Mutation Strategy for Metropolis Light Transport Algorithm , 2001 .

[80]  A. Doucet,et al.  Simulated likelihood inference for stochastic volatility models using continuous particle filtering , 2014 .

[81]  Sumeetpal S. Singh,et al.  Forward Smoothing using Sequential Monte Carlo , 2010, 1012.5390.

[82]  Yura N. Perov,et al.  Venture: a higher-order probabilistic programming platform with programmable inference , 2014, ArXiv.

[83]  Andrew D. Martin,et al.  Assessing Preference Change on the US Supreme Court , 2007 .

[84]  D. Blei Bayesian Nonparametrics I , 2016 .

[85]  Ajay Jasra,et al.  Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo , 2013, 1311.4117.

[86]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[87]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[88]  Zhiwu Zhang,et al.  Mixed linear model approach adapted for genome-wide association studies , 2010, Nature Genetics.

[89]  Robert B. Gramacy,et al.  Particle Learning of Gaussian Process Models for Sequential Design and Optimization , 2009, 0909.5262.

[90]  Melvin J. Hinich,et al.  Time Series Analysis by State Space Methods , 2001 .

[91]  A. Doucet,et al.  Derivative-Free Estimation of the Score Vector and Observed Information Matrix with Application to State-Space Models , 2013, 1304.5768.

[92]  Fredrik Lindsten,et al.  Backward Simulation Methods for Monte Carlo Statistical Inference , 2013, Found. Trends Mach. Learn..

[93]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[94]  A. Mira,et al.  Zero Variance Differential Geometric Markov Chain Monte Carlo Algorithms , 2014 .

[95]  Simon J. Godsill,et al.  A reversible jump sampler for autoregressive time series , 1997, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[96]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[97]  Gareth W. Peters,et al.  Likelihood-free Bayesian inference for α-stable models , 2012, Comput. Stat. Data Anal..

[98]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[99]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[100]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[101]  P. E. Valenzuela,et al.  A graph/particle-based method for experiment design in nonlinear systems , 2014, 1403.4044.

[102]  K. Mengersen,et al.  Asymptotic behaviour of the posterior distribution in overfitted mixture models , 2011 .

[103]  Robert L. Wolpert,et al.  Statistical Inference , 2019, Encyclopedia of Social Network Analysis and Mining.

[104]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[105]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[106]  Zoubin Ghahramani,et al.  Probabilistic machine learning and artificial intelligence , 2015, Nature.

[107]  Y. Wang,et al.  The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914 , 2016 .

[108]  André Carvalho Bittencourt,et al.  On Modeling and Diagnosis of Friction and Wear in Industrial Robots , 2014 .

[109]  Henrik Ohlsson,et al.  Regularization for Sparseness and Smoothness : Applications in System Identification and Signal Processing , 2010 .

[110]  Ali Taylan Cemgil,et al.  Sequential Monte Carlo Samplers for Dirichlet Process Mixtures , 2010, AISTATS.

[111]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[112]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[113]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[114]  Per-Johan Nordlund,et al.  Efficient Estimation and Detection Methods for Airborne Applications , 2008 .

[115]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[116]  Paul Debevec Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 2008, SIGGRAPH Classes.

[117]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[118]  Christina Grönwall Ground Object Recognition using Laser Radar Data : Geometric Fitting, Performance Analysis, and Applications , 2006 .

[119]  Johan Dahlin,et al.  A Method for Community Detection in Uncertain Networks , 2011, 2011 European Intelligence and Security Informatics Conference.

[120]  A. Doucet,et al.  The correlated pseudomarginal method , 2015, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[121]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[122]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[123]  Sylvia Richardson,et al.  Sampling from Dirichlet process mixture models with unknown concentration parameter: mixing issues in large data implementations , 2013, Statistics and Computing.

[124]  A. W. Phillips,et al.  A. W. H. Phillips: Collected Works in Contemporary Perspective: The relation between unemployment and the rate of change of money wage rates in the United Kingdom, 1861-1957 , 2000 .

[125]  F. Markowetz Five selfish reasons to work reproducibly , 2015, Genome Biology.

[126]  Mikael Norrlöf,et al.  Iterative Learning Control : Analysis, Design, and Experiments , 2000 .

[127]  Tommy Svensson Mathematical Tools and Software for Analysis and Design of Nonlinear Control Systems , 1992 .

[128]  Marco J. Lombardi Indirect estimation of α-stable stochastic volatility models , 2005 .

[129]  Victoria Stodden,et al.  Reproducible Research , 2019, The New Statistics with R.

[130]  Håkan Hjalmarsson Aspects on Incomplete Modeling in System Identification , 1993 .

[131]  G. Roberts,et al.  Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .

[132]  Mille Millnert Identification and Control of Systems Subject to Abrupt Changes , 1983 .

[133]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[134]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[135]  T. Ardeshiri,et al.  Analytical Approximations for Bayesian Inference , 2015 .

[136]  David J. C. MacKay,et al.  BAYESIAN NON-LINEAR MODELING FOR THE PREDICTION COMPETITION , 1996 .

[137]  Johan Dahlin,et al.  On robust input design for nonlinear dynamical models , 2017, Autom..

[138]  G. Roberts,et al.  Langevin Diffusions and Metropolis-Hastings Algorithms , 2002 .

[139]  Thomas A. Dean,et al.  Asymptotic behaviour of approximate Bayesian estimators , 2011, 1105.3655.

[140]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[141]  N. Kantas,et al.  Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods , 2013, Methodology and Computing in Applied Probability.

[142]  Andrew D. Martin,et al.  MCMCpack: Markov chain Monte Carlo in R , 2011 .

[143]  Jacob Roll,et al.  Detecting and positioning overtaking vehicles using 1D optical flow , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[144]  Jerker Nordh,et al.  pyParticleEst: A Python Framework for Particle-Based Estimation Methods , 2017 .

[145]  Thomas B. Schön,et al.  Parallel Implementation of Particle MCMC Methods on a GPU , 2012 .

[146]  Per Skoglar,et al.  Tracking and Planning for Surveillance Applications , 2012 .

[147]  N. Chopin,et al.  Sequential Quasi-Monte Carlo , 2014, 1402.4039.

[148]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[149]  B. Bengtsson On some Control Problems for Queues , 1982 .

[150]  F. Lindsten,et al.  Particle Filter-Based Gaussian Process Optimisation for Parameter Inference , 2013, 1311.0689.

[151]  E. Weinstein,et al.  A new method for evaluating the log-likelihood gradient, the Hessian, and the Fisher information matrix for linear dynamic systems , 1989, IEEE Trans. Inf. Theory.

[152]  Arthur Charpentier Prévision avec des copules en finance , 2015 .

[153]  Inger Klein,et al.  Automatic Synthesis of Sequential Control Schemes , 1993 .

[154]  S. Godsill On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty , 2001 .

[155]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[156]  Matthew Harding,et al.  PANEL PROBIT WITH FLEXIBLE CORRELATED EFFECTS: QUANTIFYING TECHNOLOGY SPILLOVERS IN THE PRESENCE OF LATENT HETEROGENEITY , 2012 .

[157]  Paul Fearnhead,et al.  Particle filters for mixture models with an unknown number of components , 2004, Stat. Comput..

[158]  J. Fox Bayesian Item Response Modeling: Theory and Applications , 2010 .

[159]  A. Stuart,et al.  Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.

[160]  Thomas Bo Schön,et al.  Approximate inference in state space models with intractable likelihoods using Gaussian process optimisation , 2014 .

[161]  Roman Garnett,et al.  Bayesian Quadrature for Ratios , 2012, AISTATS.

[162]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[163]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[164]  Christian Lundquist,et al.  Sensor fusion for automotive applications , 2011 .

[165]  M. Beaumont Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.

[166]  Kjell Nordström Uncertainty, Robustness and Sensitivity Reduction in the Design of Single Input Control Systems , 1987 .

[167]  Ralph S. Silva,et al.  On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .

[168]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[169]  Richard G. Everitt,et al.  Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks , 2012, ArXiv.

[170]  Johan Dahlin,et al.  Marginalizing Gaussian process hyperparameters using sequential Monte Carlo , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[171]  P. Lindskog Methods, Algorithms and Tools for System Identification Based on Prior Knowledge , 1996 .

[172]  P. Fearnhead,et al.  Particle Metropolis-adjusted Langevin algorithms , 2014, 1412.7299.

[173]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[174]  Xiaolin Hu,et al.  Data assimilation using sequential monte carlo methods in wildfire spread simulation , 2012, TOMC.

[175]  Ajay Jasra,et al.  Approximate Bayesian Computation for a Class of Time Series Models , 2014, 1401.0265.

[176]  Chong Wang,et al.  Asymptotically Exact, Embarrassingly Parallel MCMC , 2013, UAI.

[177]  Johan Dahlin,et al.  Hierarchical Bayesian ARX Models for Robust Inference , 2012 .

[178]  Johanna Wallén,et al.  Estimation-based iterative learning control , 2011 .

[179]  Ola Härkegård,et al.  Backstepping and control allocation with applications to flight control , 2003 .

[180]  Philipp Hennig,et al.  Fast Probabilistic Optimization from Noisy Gradients , 2013, ICML.

[181]  Johan Dahlin,et al.  Particle-based Gaussian process optimization for input design in nonlinear dynamical models , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[182]  Michael U. Gutmann,et al.  Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..

[183]  Jon Doyle,et al.  Fast Hamiltonian Monte Carlo Using GPU Computing , 2014, 1402.4089.

[184]  Mats Viberg,et al.  Subspace fitting concepts in sensor array processing , 1990 .

[185]  Ahn Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring , 2012 .

[186]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[187]  Daniel Petersson,et al.  A Nonlinear Optimization Approach to H2-Optimal Modeling and Control , 2013 .

[188]  Thomas Bo Schön,et al.  Efficient approximate Bayesian inference for models with intractable likelihoods , 2015 .

[189]  Christian Posse,et al.  Bayesian Mixed-Effects Models for Recommender Systems , 1999 .

[190]  Peter Orbanz,et al.  Construction of Nonparametric Bayesian Models from Parametric Bayes Equations , 2009, NIPS.

[191]  Anders Stenman,et al.  Model on Demand: Algorithms, Analysis and Applications , 1999 .

[192]  Emily B. Fox,et al.  Bayesian nonparametric learning of complex dynamical phenomena , 2009 .

[193]  Fredrik Gunnarsson,et al.  Uplink load in CDMA cellular radio systems , 2006, IEEE Transactions on Vehicular Technology.

[194]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[195]  Randal Douc,et al.  Nonlinear Time Series: Theory, Methods and Applications with R Examples , 2014 .

[196]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[197]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[198]  Yihui Xie,et al.  knitr: A Comprehensive Tool for Reproducible Research in R , 2018, Implementing Reproducible Research.

[199]  Svetlozar T. Rachev,et al.  Stable modeling of value at risk , 2001 .

[200]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[201]  J. Marin,et al.  Population Monte Carlo , 2004 .

[202]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[203]  Christian Lundquist,et al.  On Extended Target Tracking Using PHD Filters , 2012 .

[204]  Jon F. Claerbout,et al.  Electronic documents give reproducible research a new meaning: 62nd Ann , 1992 .

[205]  Johan Dahlin,et al.  Backward sequential Monte Carlo for marginal smoothing , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[206]  Arnaud Doucet,et al.  On Markov chain Monte Carlo methods for tall data , 2015, J. Mach. Learn. Res..

[207]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[208]  Thomas B. Schön,et al.  Robust auxiliary particle filters using multiple importance sampling , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[209]  N. Shephard,et al.  BAYESIAN INFERENCE BASED ONLY ON SIMULATED LIKELIHOOD: PARTICLE FILTER ANALYSIS OF DYNAMIC ECONOMIC MODELS , 2011, Econometric Theory.

[210]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[211]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[212]  B. Larget,et al.  Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .

[213]  Johan Dahlin,et al.  Newton-based maximum likelihood estimation in nonlinear state space models , 2015, 1502.03655.

[214]  M. Jirstrand Constructive Methods for Inequality Constraints in Control , 1998 .

[215]  Eric R. Ziegel,et al.  Analysis of Financial Time Series , 2002, Technometrics.

[216]  Jonas Jansson,et al.  Collision Avoidance Theory : with Application to Automotive Collision Mitigation , 2005 .

[217]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[218]  H. Birks,et al.  D.G. Frey and E.S. Deevey Review 1: Numerical tools in palaeolimnology – Progress, potentialities, and problems , 1998 .

[219]  Ke Wang-Chen Transformation and Symbolic Calculations in Filtering and Control , 1994 .

[220]  Toshiya Hachisuka,et al.  Multiplexed metropolis light transport , 2014, ACM Trans. Graph..

[221]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[222]  Leland Stewart,et al.  Use of Bayesian belief networks to fuse continuous and discrete information for target recognition, tracking, and situation assessment , 1992, Defense, Security, and Sensing.

[223]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[224]  Markus Gerdin Identification and Estimation for Models Described by Differential-Algebraic Equations , 2006 .

[225]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[226]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[227]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[228]  H. Fortell Algebraic Approaches to Normal Forms and Zero Dynamics , 1995 .

[229]  Sina Khoshfetrat Pakazad,et al.  Divide and Conquer: Distributed Optimization and Robustness Analysis , 2015 .

[230]  Nicholas G. Polson,et al.  Particle Learning and Smoothing , 2010, 1011.1098.

[231]  Andrew Gordon Wilson,et al.  Student-t Processes as Alternatives to Gaussian Processes , 2014, AISTATS.

[232]  J. Rosenthal,et al.  On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.

[233]  J. Albert Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling , 1992 .

[234]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[235]  Antonietta Mira,et al.  Zero variance Markov chain Monte Carlo for Bayesian estimators , 2010, Stat. Comput..

[236]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[237]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[238]  J. Spall Implementation of the simultaneous perturbation algorithm for stochastic optimization , 1998 .

[239]  Loukia Meligkotsidou,et al.  Augmentation schemes for particle MCMC , 2014, Statistics and Computing.

[240]  David A. Rasmussen,et al.  Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series , 2011, PLoS Comput. Biol..

[241]  Johan Dahlin,et al.  Particle Metropolis–Hastings using gradient and Hessian information , 2013, Statistics and Computing.

[242]  Martin A. Skoglund Inertial Navigation and Mapping for Autonomous Vehicles , 2014 .

[243]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[244]  Johan Dahlin,et al.  Real-time video based lighting using GPU raytracing , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[245]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[246]  Marco F. Huber Recursive Gaussian process: On-line regression and learning , 2014, Pattern Recognit. Lett..

[247]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[248]  David L Donoho,et al.  An invitation to reproducible computational research. , 2010, Biostatistics.

[249]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[250]  Jakob Roll Local and Piecewise Affine Approaches to System Identification , 2003 .

[251]  G. Roberts,et al.  MCMC methods for diffusion bridges , 2008 .

[252]  Carlos E. Rodríguez,et al.  Searching for efficient Markov chain Monte Carlo proposal kernels , 2013, Proceedings of the National Academy of Sciences.

[253]  Andrew Gelman,et al.  Bayesian Model-Building By Pure Thought: Some Principles and Examples , 1994 .

[254]  M. Weisz Econometric Analysis Of Panel Data , 2016 .

[255]  Johan Dahlin,et al.  Ensemble approaches for improving community detection methods , 2013, ArXiv.

[256]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[257]  Fredrik Lindsten,et al.  Sequential Monte Carlo for Graphical Models , 2014, NIPS.

[258]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[259]  M. Marazita,et al.  Genome-wide Association Studies , 2012, Journal of dental research.

[260]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[261]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[262]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[263]  Ragnar Wallin,et al.  Optimization Algorithms for System Analysis and Identification , 2004 .

[264]  G. Hendeby,et al.  Performance and Implementation Aspects of Nonlinear Filtering , 2008 .

[265]  K. Forsman Constructive Commutative Algebra in Nonlinear Control Theory , 1991 .

[266]  Sumeetpal S. Singh,et al.  Filtering via approximate Bayesian computation , 2010, Statistics and Computing.

[267]  Stoyan V. Stoyanov,et al.  Stochastic models for risk estimation in volatile markets: a survey , 2008, Ann. Oper. Res..

[268]  Daniel Axehill,et al.  Integer Quadratic Programming for Control and Communication , 2008 .

[269]  P. Fearnhead Markov chain Monte Carlo, Sufficient Statistics, and Particle Filters , 2002 .

[270]  Adam D. Bull,et al.  Convergence Rates of Efficient Global Optimization Algorithms , 2011, J. Mach. Learn. Res..

[271]  Jeroen D. Hol,et al.  Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-Wideband and GPS , 2011 .

[272]  Thore Graepel,et al.  WWW 2009 MADRID! Track: Data Mining / Session: Statistical Methods Matchbox: Large Scale Online Bayesian Recommendations , 2022 .

[273]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[274]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[275]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[276]  D. Lizotte Practical bayesian optimization , 2008 .

[277]  A. Beskos,et al.  A Stable Particle Filter in High-Dimensions , 2014, 1412.3501.

[278]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[279]  J. Löfberg Minimax approaches to robust model predictive control , 2003 .

[280]  Ingela Lind,et al.  Regressor and Structure Selection Uses of ANOVA in System Identification , 2006 .

[281]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[282]  Andrew D. Martin,et al.  Dynamic Ideal Point Estimation via Markov Chain Monte Carlo for the U.S. Supreme Court, 1953–1999 , 2002, Political Analysis.

[283]  J. Sjöberg Non-Linear System Identification with Neural Networks , 1995 .

[284]  Luke Bornn,et al.  A Pseudo-Marginal Perspective on the ABC Algorithm , 2014 .

[285]  Jean-Marie Cornuet,et al.  Adaptive Multiple Importance Sampling , 2009, 0907.1254.

[286]  Phillip Boyle,et al.  Gaussian Processes for Regression and Optimisation , 2007 .

[287]  Darren J Wilkinson,et al.  Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.

[288]  S. Ljung Fast Algorithms for Integral Equations and Least Squares Identification Problems , 1983 .

[289]  Niklas Wahlstrom,et al.  Modeling of Magnetic Fields and Extended Objects for Localization Applications , 2015 .

[290]  Jonas Gillberg Frequency Domain Identification of Continuous-Time Systems : Reconstruction and Robustness , 2006 .

[291]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[292]  竹安 数博,et al.  Time series analysis and its applications , 2007 .

[293]  H. Ishwaran,et al.  DIRICHLET PRIOR SIEVES IN FINITE NORMAL MIXTURES , 2002 .

[294]  C. Robert,et al.  Approximate Bayesian Computation in State Space Models , 2014, 1409.8363.

[295]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[296]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[297]  Pierre Del Moral,et al.  Mean Field Simulation for Monte Carlo Integration , 2013 .

[298]  Mattias Villani,et al.  Bayesian Estimation of an Open Economy DSGE Model with Incomplete Pass-Through , 2006 .

[299]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[300]  Alexander J. Smola,et al.  Heteroscedastic Gaussian process regression , 2005, ICML.

[301]  H. Jonson A Newton Method for Solving Non-Linear Optimal Control Problems with General Constraints , 1983 .

[302]  A. Isaksson On System Identification in one and two Dimensions with Signal Processing Applications , 1988 .

[303]  F. Gustafsson Estimation of Discrete Parameters in Linear Systems , 1993 .

[304]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[305]  Fredrik Gunnarsson Power control in cellular radio system: Analysis, design and estimation , 2000 .

[306]  P. Visscher,et al.  Advantages and pitfalls in the application of mixed-model association methods , 2014, Nature Genetics.

[307]  R. Casarin Bayesian Inference for Generalised Markov Switching Stochastic Volatility Models , 2004 .

[308]  Viju Raghupathi,et al.  Big data analytics in healthcare: promise and potential , 2014, Health Information Science and Systems.

[309]  Roded Sharan,et al.  Bayesian haplo-type inference via the dirichlet process , 2004, ICML.

[310]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[311]  Markus Rupp,et al.  Reproducible research in signal processing , 2009, IEEE Signal Processing Magazine.

[312]  Mark J. Schervish,et al.  Nonstationary Covariance Functions for Gaussian Process Regression , 2003, NIPS.

[313]  Frida Eng,et al.  Non-Uniform Sampling in Statistical Signal Processing , 2007 .

[314]  Zoran Sjanic,et al.  Navigation and Mapping for Aerial Vehicles Based on Inertial and Imaging Sensors , 2013 .

[315]  E. Vázquez,et al.  Convergence properties of the expected improvement algorithm with fixed mean and covariance functions , 2007, 0712.3744.

[316]  Arnaud Doucet,et al.  Sequentially interacting Markov chain Monte Carlo methods , 2010, 1211.2582.

[317]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[318]  Max Welling,et al.  GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation , 2014, UAI.

[319]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[320]  Simon Günter,et al.  A Stochastic Quasi-Newton Method for Online Convex Optimization , 2007, AISTATS.

[321]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[322]  Carl E. Rasmussen,et al.  Gaussian Process Change Point Models , 2010, ICML.

[323]  Mark A. Girolami,et al.  Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions , 2014, Entropy.

[324]  Johan Dahlin,et al.  Sequential Monte Carlo Methods for System Identification , 2015, 1503.06058.

[325]  Fredrik Gustafsson,et al.  On Resampling Algorithms for Particle Filters , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[326]  Patrik Axelsson,et al.  Sensor Fusion and Control Applied to Industrial Manipulators , 2014 .

[327]  Jan M. Maciejowski,et al.  On Particle Methods for Parameter Estimation in General State-Space Models , 2015 .

[328]  Pierre Del Moral,et al.  Biips: Software for Bayesian Inference with Interacting Particle Systems , 2014, 1412.3779.

[329]  T. McKelvey Identification of State-Space Models from Time and Frequency Data , 1995 .

[330]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[331]  Michael A. Osborne Bayesian Gaussian processes for sequential prediction, optimisation and quadrature , 2010 .

[332]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[333]  Jan-Erik Strömberg,et al.  A Mode Switching Modelling Philosophy , 1994 .

[334]  Magnus Larsson,et al.  Behavioral and Structural Model Based Approaches to Discrete Diagnosis , 1999 .

[335]  Johan Dahlin,et al.  Bayesian inference for mixed effects models with heterogeneity , 2016 .

[336]  P. Fearnhead,et al.  Particle Metropolis adjusted Langevin algorithms for state-space models , 2014, 1402.0694.

[337]  Valur Einarsson Model Checking Methods for Mode Switching Systems , 2000 .

[338]  Iain Murray,et al.  Pseudo-Marginal Slice Sampling , 2015, AISTATS.

[339]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[340]  J. Dahlin Sequential Monte Carlo for inference in nonlinear state space models , 2014 .

[341]  R. Langrock Some applications of nonlinear and non-Gaussian state–space modelling by means of hidden Markov models , 2011 .

[342]  Radford M. Neal,et al.  ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .

[343]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[344]  Peter A. J. Nagy Tools for Knowledge-Based Signal Processing with Applications to System Identification , 1992 .

[345]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[346]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[347]  Zhijie Xia,et al.  Modeling and control of flexible manipulators , 1992 .

[348]  Axel Finke On extended state-space constructions for Monte Carlo methods , 2015 .

[349]  C. Andrieu,et al.  Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.

[350]  Sumeetpal S. Singh,et al.  Parameter Estimation for Hidden Markov Models with Intractable Likelihoods , 2011 .

[351]  M. Pitt,et al.  Particle filters for continuous likelihood evaluation and maximisation , 2011 .

[352]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[353]  Svante Gunnarsson Frequency Domain Aspects of Modeling and Control in Adaptive Systems , 1988 .

[354]  Galin L. Jones On the Markov chain central limit theorem , 2004, math/0409112.

[355]  Thomas Bo Schön,et al.  Bayesian nonparametric identification of piecewise affine ARX systems , 2015 .

[356]  S. Andersson On Dimension Reduction in Sensor Array Signal Processing , 1992 .

[357]  P. Jacob,et al.  On nonnegative unbiased estimators , 2013, 1309.6473.

[358]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[359]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[360]  Ryan P. Adams,et al.  Patterns of Scalable Bayesian Inference , 2016, Found. Trends Mach. Learn..

[361]  Rickard Karlsson,et al.  Particle filtering for positioning and tracking applications , 2005 .

[362]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[363]  A. Doucet,et al.  Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.

[364]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[365]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[366]  Andreas Eidehall,et al.  Tracking and threat assessment for automotive collision avoidance , 2007 .

[367]  Fredrik Lindsten,et al.  Particle filters and Markov chains for learning of dynamical systems , 2013 .

[368]  Adam M. Johansen,et al.  SMCTC : sequential Monte Carlo in C++ , 2009 .