Momentum Distribution in Solar Flare Processes

We discuss the consequences of momentum conservation in processes related to solar flares and coronal mass ejections (CMEs), in particular describing the relative importance of vertical impulses that could contribute to the excitation of seismic waves (“sunquakes”). The initial impulse associated with the primary flare energy transport in the impulsive phase contains sufficient momentum, as do the impulses associated with the acceleration of the evaporation flow (the chromospheric shock) or the CME itself. We note that the deceleration of the evaporative flow, as coronal closed fields arrest it, will tend to produce an opposite impulse, reducing the energy coupling into the interior. The actual mechanism of the coupling remains unclear at present.

[1]  H. Hudson,et al.  Global Forces in Eruptive Solar Flares: The Lorentz Force Acting on the Solar Atmosphere and the Solar Interior , 2011 .

[2]  H. Hudson Thick-target processes and white-light flares , 1972 .

[3]  A. Donea,et al.  Seismic Emission from the Solar Flares of 2003 October 28 and 29 , 2005 .

[4]  Z. Svestka The phase of particle acceleration in the flare development , 1970 .

[5]  Brian R. Dennis,et al.  Refinements to flare energy estimates: A followup to “Energy partition in two solar flare/CME events” by A. G. Emslie et al. , 2005 .

[6]  A. Kosovichev,et al.  X-ray flare sparks quake inside Sun , 1998, Nature.

[7]  C. J. Wolfson,et al.  White-Light Flares: A TRACE/RHESSI Overview , 2006 .

[8]  A. Hundhausen,et al.  Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity , 2004 .

[9]  Thomas R. Metcalf,et al.  Momentum balance in four solar flares , 1990 .

[10]  M. Temmer,et al.  Acceleration in Fast Halo CMEs and Synchronized Flare HXR Bursts , 2008 .

[11]  H. Hudson,et al.  Observing coronal mass ejections without coronagraphs , 2001 .

[12]  John C. Brown,et al.  The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts , 1971 .

[13]  L. Fletcher,et al.  ENERGY RELEASE AND TRANSFER IN SOLAR FLARES: SIMULATIONS OF THREE-DIMENSIONAL RECONNECTION , 2009 .

[14]  V. Zharkova The Mechanisms of Particle Kinetics and Dynamics Leading to Seismic Emission and Sunquakes , 2008 .

[15]  N. Gopalswamy,et al.  Visibility of coronal mass ejections as a function of flare location and intensity , 2005 .

[16]  P. Cally,et al.  Helioseismic analysis of the solar flare‐induced sunquake of 2005 January 15 – II. A magnetoseismic study , 2008, 0807.3783.

[17]  H. Hudson,et al.  Soft X‐Ray Signatures of Coronal Ejections , 2013 .

[18]  C. Hyder A phenomenological model for disparitions brusques followed by flarelike chromospheric brightenings , 1967 .

[19]  G. Poletto,et al.  Multi-thermal observations of newly formed loops in a dynamic flare , 1987 .

[20]  G. Simnett,et al.  On the production of hard X-rays in solar flares , 1990 .

[21]  G. A. Gary,et al.  Plasma Beta above a Solar Active Region: Rethinking the Paradigm , 2001 .

[22]  B. Dennis,et al.  VELOCITY CHARACTERISTICS OF EVAPORATED PLASMA USING HINODE/EUV IMAGING SPECTROMETER , 2009, 0905.1669.

[23]  C. Wolff Free Oscillations of the Sun and Their Possible Stimulation by Solar Flares , 1972 .

[24]  R. Howe Subsurface and atmospheric influences on solar activity : proceedings of a workshop held at National Solar Observatory, Sacramento Peak, Sunspot, New Mexico, USA 16-20 April 2007 , 2008 .

[25]  R. Canfield,et al.  Explosive plasma flows in a solar flare , 1988 .

[26]  H. Hudson,et al.  Impulsive Phase Flare Energy Transport by Large-Scale Alfvén Waves and the Electron Acceleration Problem , 2007, 0712.3452.

[27]  J. Belcher ALFVÉNIC Wave Pressures and the Solar Wind , 1971 .

[28]  J. W. Knight,et al.  The Reverse Current in Solar Flares. , 1976 .

[29]  A. Kosovichev The Cause of Photospheric and Helioseismic Responses to Solar Flares: High-Energy Electrons or Protons? , 2007, 0710.0757.

[30]  Haimin Wang,et al.  OBSERVATIONAL EVIDENCE OF BACK REACTION ON THE SOLAR SURFACE ASSOCIATED WITH CORONAL MAGNETIC RESTRUCTURING IN SOLAR ERUPTIONS , 2010, 1005.4137.

[31]  Valentina V. Zharkova,et al.  Magnetic Energy Release and Transients in the Solar Flare of 2000 July 14 , 2001 .

[32]  B. Dennis,et al.  Fast variations in high-energy X-rays from solar flares and their constraints on nonthermal models , 1984 .

[33]  H. Hudson,et al.  Flare Energy and Magnetic Field Variations , 2008 .

[34]  T. Berger,et al.  Flare Ribbons Observed with G-band and Fe I 6302 Å Filters of the Solar Optical Telescope on Board Hinode , 2007, 0711.3946.

[35]  H. Hudson,et al.  A TRACE White Light and RHESSI Hard X-Ray Study of Flare Energetics , 2007 .

[36]  E. L. Van Dessel,et al.  Eit and LASCO Observations of the Initiation of a Coronal Mass Ejection , 1997 .

[37]  P. Mauas,et al.  The White-Light Flare of 1982 June 15: Models , 1990 .

[38]  H. Hudson,et al.  Implosions in Coronal Transients , 2000, The Astrophysical journal.

[39]  Juan M. Fontenla,et al.  SEMIEMPIRICAL MODELS OF THE SOLAR ATMOSPHERE. III. SET OF NON-LTE MODELS FOR FAR-ULTRAVIOLET/EXTREME-ULTRAVIOLET IRRADIANCE COMPUTATION , 2009 .

[40]  A. Hundhausen Coronal Mass Ejections , 1997 .

[41]  C. Lindsey,et al.  Seismic Emission From Solar Flares , 2005 .

[42]  F. Orrall,et al.  White light events as photospheric flares , 1970 .

[43]  C. Lindsey,et al.  Helioseismic analysis of the solar flare-induced sunquake of 2005 January 15 , 2007, 0704.3472.

[44]  J. F. Mckenzie,et al.  The origin of high speed solar wind streams , 1992 .

[45]  R. F. Donnelly,et al.  Impulsive hard X-ray and ultraviolet emission during solar flares , 1971 .

[46]  J. Harvey,et al.  Longitudinal Magnetic Field Changes Accompanying Solar Flares , 2005 .

[47]  Jie Zhang,et al.  A Comparative Study between Eruptive X-Class Flares Associated with Coronal Mass Ejections and Confined X-Class Flares , 2007, 0808.2976.

[48]  T. Forbes,et al.  Energy partition in two solar flare/CME events , 2004 .

[49]  H. Hudson,et al.  Rapid sunspot motion during a major solar flare , 1993 .

[50]  N. Kostiuk,et al.  Gasdynamics of a flare region heated by a stream of high-velocity electrons , 1975 .

[51]  H. Hudson,et al.  SOHO EIT Observations of Extreme-Ultraviolet “Dimming” Associated with a Halo Coronal Mass Ejection , 1999 .

[52]  A. Emslie,et al.  Radiative backwarming in white-light flares , 1989 .

[53]  J. Zhang,et al.  A Study of the Kinematic Evolution of Coronal Mass Ejections , 2004 .

[54]  G. Haerendel CHROMOSPHERIC EVAPORATION VIA ALFVÉN WAVES , 2009 .

[55]  I. Craig,et al.  The importance of particle beam momentum in beam-heated models of solar flares , 1984 .

[56]  Andreas Klassen,et al.  Energetic Particle Acceleration and Propagation in Strong CME-Less Flares , 2010 .

[57]  Olivier J. Blanchard The Basic Mechanisms , 1998 .

[58]  B. Vršnak,et al.  Formation Of Coronal Mhd Shock Waves – I. The Basic Mechanism , 2000 .

[59]  R. Lysak,et al.  Alfvénon, driven reconnection and the direct generation of the field‐aligned current , 1994 .