Reducing the Size of NFAs by Using Equivalences and Preorders

The efficiency of regular expression matching algorithms depends very much on the size of the nondeterministic finite automata (NFA) obtained from regular expressions. Reducing the size of these automata by using equivalences has been shown to reduce significantly the search time. We consider the problem of reducing the size of arbitrary NFAs using equivalences and preorders. For equivalences, we give an algorithm to optimally combine equivalent states for reducing the size of the automata. We also show that the problem of optimally using preorders to reduce the size of an automaton is NP-hard.

[1]  Boris Melnikov A NEW ALGORITHM OF THE STATE-MINIMIZATION FOR THE NONDETERMINISTIC FINITE AUTOMATA , 1999 .

[2]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[3]  Tsunehiko Kameda,et al.  On the State Minimization of Nondeterministic Finite Automata , 1970, IEEE Transactions on Computers.

[4]  Lucian Ilie,et al.  Algorithms for Computing Small NFAs , 2002, MFCS.

[5]  Thomas Wilke,et al.  Translating Regular Expressions into Small epsilon-Free Nondeterministic Finite Automata , 1997, STACS.

[6]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[7]  Grzegorz Rozenberg,et al.  Theory Is Forever , 2004, Lecture Notes in Computer Science.

[8]  M.J. Lutz,et al.  Flexible Pattern Matching in Strings: Practical Online Search Algorithms for Texts and Biological Sequences [Book Review] , 2002, Computer.

[9]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[10]  Jean-Marc Champarnaud,et al.  Erratum to "NFA reduction algorithms by means of regular inequalities" [TCS 327 (2004) 241-253] , 2005, Theor. Comput. Sci..

[11]  Giuseppe Cattaneo,et al.  Algorithm engineering , 1999, CSUR.

[12]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[13]  Gonzalo Navarro,et al.  Compact DFA Representation for Fast Regular Expression Search , 2001, Algorithm Engineering.

[14]  Anca Muscholl,et al.  Computing epsilon-free NFA from regular expressions in O(n log2(n)) time , 2000, RAIRO Theor. Informatics Appl..

[15]  Jean-Marc Champarnaud,et al.  NFA reduction algorithms by means of regular inequalities , 2004, Theor. Comput. Sci..

[16]  Reuven Bar-Yehuda,et al.  A Linear-Time Approximation Algorithm for the Weighted Vertex Cover Problem , 1981, J. Algorithms.

[17]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[18]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[19]  Lucian Ilie,et al.  On NFA Reductions , 2004, Theory Is Forever.

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  Anca Muscholl,et al.  Computing epsilon-Free NFA from Regular Expressions in O(n log²(n)) Time , 1998, MFCS.

[22]  Lucian Ilie,et al.  Reducing NFAs by invariant equivalences , 2003, Theor. Comput. Sci..

[23]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[24]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[25]  Patrícia Duarte de Lima Machado,et al.  Unit Testing for CASL Architectural Specifications , 2002, MFCS.

[26]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[27]  B. Melnikov Once more about the state-minimization of the nondeterministic finite automata , 2000 .