Antifungal compounds that target fungal membranes: applications in plant disease control

The fungal membrane has the fundamental role of maintaining cell order and integrity. Therefore, a number of disease-control methods have involved compounds that directly or indirectly target fungal membranes or their components. Some of these antifungal compounds affect the synthesis of specific membrane components (e.g., sterol biosynthesis inhibitors) and are among the most effective antifungals in plant disease control. However, these compounds are prone to pathogen resistance development that greatly shortens their effective life span. Conversely, some antifungals possess generalized effects on fungal membrane integrity. These compounds are typically not as effective, but they are less likely to induce resistance in sensitive fungi. The use of both classes of antifungals is still of great relevance in plant pathology, in particular in the case of integrated pest management. The correct use of antifungals that target fungal membranes could be the basis of a promising strategy to lower applications of synthetic pesticides while lengthening the effective life span of the disease control measure. Key words: antifungal fatty acid, antifungal salt, antimicrobial peptide, choline synthesis inhibitor, disease control, fungal membrane, saponin, sterol biosynthesis inhibitor. La membrane fongique joue le rôle fondamental du maintien de l'ordre et de l'intégrité de la cellule. Ainsi, de nombreuses méthodes de lutte contre les maladies impliquent des composés qui ciblent directement ou indirectement les membranes fongiques ou leurs composantes. Certains de ces composés antifongiques affectent la synthèse de composantes membranaires spécifiques (e.g., inhibiteurs de la synthèse des stérols) et sont parmi les composés antifongiques les plus efficaces dans la lutte contre les maladies des plantes. Par contre, ces composés sont vulnérables au développement de résistance chez les champignons ciblés, ce qui réduit considérablement leur durée de vie efficace. En revanche, d'autres composés antifongiques possèdent des effets généralisés sur l'intégrité membranaire. Ces composés sont typiquement moins efficaces, mais sont moins propices au développement de résistance chez les champignons sensibles. L'usage de ces deux classes de composés antifongiques demeure d'une grande pertinence en pathologie végétale, particulièrement dans un contexte de lutte intégrée. L'usage approprié de composés antifongiques affectant les membranes pourrait être à la base d'une stratégie prometteuse destinée à réduire les applications de pesticides de synthèse tout en allongeant leur durée de vie efficace dans la lutte contre les maladies des plantes. Mots-clés : acide gras antifongique, sel antifongique, peptide antimicrobien, inhibiteur de la synthèse de la choline, lutte contre les maladies, membrane fongique, saponine, inhibiteur de la synthèse des stérols.

[1]  R. Tweddell,et al.  Role of Lipid Composition and Lipid Peroxidation in the Sensitivity of Fungal Plant Pathogens to Aluminum Chloride and Sodium Metabisulfite , 2007, Applied and Environmental Microbiology.

[2]  H. Vogel,et al.  Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. , 2006, Biochimica et biophysica acta.

[3]  E. Bardaji,et al.  Inhibition of Plant-Pathogenic Bacteria by Short Synthetic Cecropin A-Melittin Hybrid Peptides , 2006, Applied and Environmental Microbiology.

[4]  Kyung-Soo Hahm,et al.  Interactions between the plasma membrane and the antimicrobial peptide HP (2-20) and its analogues derived from Helicobacter pylori. , 2006, The Biochemical journal.

[5]  K. Bogucka,et al.  Antibacterial Activity of Synthetic Peptides Against Plant Pathogenic Pectobacterium Species , 2005 .

[6]  Á. Trigos,et al.  Ergosterol from Phytophthora drechsleri,a unusual metabolite of a member of this genus , 2005, Mycopathologia.

[7]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[8]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[9]  R. Tweddell,et al.  Effect of Organic and Inorganic Salts on the Development of Helminthosporium solani, the Causal Agent of Potato Silver Scurf. , 2002, Plant disease.

[10]  D. Ebbole,et al.  Independent and Synergistic Activity of Synthetic Peptides Against Thiabendazole-Resistant Fusarium sambucinum. , 2002, Phytopathology.

[11]  E. Earle,et al.  Sensitivity of bacterial and fungal plant pathogens to the lytic peptides, MSI-99, magainin II, and cecropin B. , 2002, Molecular plant-microbe interactions : MPMI.

[12]  R. Tweddell,et al.  Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot , 2002 .

[13]  Z. Punja,et al.  Hydrolytic enzymes and antifungal compounds produced by Tilletiopsis species, phyllosphere yeasts that are antagonists of powdery mildew fungi. , 2002, Canadian journal of microbiology.

[14]  R. Bélanger,et al.  Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. , 2002, FEMS yeast research.

[15]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[16]  R. Bélanger,et al.  Specificity and Mode of Action of the Antifungal Fatty Acid cis-9-Heptadecenoic Acid Produced byPseudozyma flocculosa , 2001, Applied and Environmental Microbiology.

[17]  R. Hamelin,et al.  In vitro toxicity of natural and designed peptides to tree pathogens and pollen , 2000 .

[18]  R. Hamelin,et al.  Structural changes of spores of tree fungal pathogens after treatment with the designed antimicrobial peptide D2A21 , 2000 .

[19]  R. Bélanger,et al.  Synthesis and Biological Characterization of (Z)-9-Heptadecenoic and (Z)-6-Methyl-9-Heptadecenoic Acids: Fatty Acids with Antibiotic Activity Produced by Pseudozyma flocculosa , 2000, Journal of Chemical Ecology.

[20]  C. Hou,et al.  Growth inhibition of plant pathogenic fungi by hydroxy fatty acids , 2000, Journal of Industrial Microbiology and Biotechnology.

[21]  L. Marnett Lipid peroxidation-DNA damage by malondialdehyde. , 1999, Mutation research.

[22]  T. C. White,et al.  Clinical, Cellular, and Molecular Factors That Contribute to Antifungal Drug Resistance , 1998, Clinical Microbiology Reviews.

[23]  D. Andreu,et al.  Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. , 1998, Molecular plant-microbe interactions : MPMI.

[24]  Carlos Gonzalez,et al.  Synthetic peptide combinatorial libraries: a method for the identification of bioactive peptides against phytopathogenic fungi. , 1997, Molecular plant-microbe interactions : MPMI.

[25]  M. Gullino,et al.  Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses , 1997 .

[26]  R. Hancock,et al.  Peptide antibiotics , 1997, The Lancet.

[27]  F. Odds,et al.  Molecular mechanisms of drug resistance in fungi. , 1994, Trends in microbiology.

[28]  B. Halliwell,et al.  Lipid peroxidation: its mechanism, measurement, and significance. , 1993, The American journal of clinical nutrition.

[29]  Y. Yamaguchi,et al.  Structure and synthesis of 11,12,13-trihydroxy-9Z,15Z-octadecadienoic acids from rice plant suffering from rice blast disease. , 1986 .

[30]  O. Kodama,et al.  Edifenphos, Inhibitor of Phosphatidylcholine Biosynthesis in Pyricularia oryzae , 1980 .

[31]  O. Kodama,et al.  Kitazin P, Inhibitor of Phosphatidylcholine Biosynthesis in Pyricularia oryzae , 1979 .

[32]  J. Weete Fungal Lipid Biochemistry: Distribution and Metabolism , 1974 .

[33]  A. Bryskier Antimicrobial agents: antibacterials and antifungals. , 2005 .

[34]  Y. Uesugi Fungal choline biosynthesis - a target for controlling rice blast , 2001 .

[35]  A. Osbourn Saponins and plant defence — a soap story , 1996 .

[36]  T. Zitter,et al.  Effects of bicarbonates and film-forming polymers on cucurbit foliar diseases , 1992 .

[37]  R. Horst,et al.  Effect of sodium bicarbonate and oils on the control of powdery mildew and black spot of roses , 1992 .

[38]  T. Kondo,et al.  An antifungal compound, 9,12,13-trihydroxy-(E)-10-octadecenoic acid, from Colocasia antiquorum inoculated with Ceratocystis fimbriata , 1989 .

[39]  C. Steel,et al.  Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by α-tomatine , 1988 .

[40]  L. Crombie,et al.  Pathogenicity of ‘take-all’ fungus to oats: Its relationship to the concentration and detoxification of the four avenacins , 1986 .

[41]  Y. Yamaguchi,et al.  Structure and synthesis of unsaturaded trihydroxy c18 fatty , 1985 .

[42]  Mitsuru Yoshida,et al.  Observation of Transmethylation from Methionine into Choline in the Intact Mycelia of Pyricularia oryzae by 13 C NMR under the Influence of Fungicides , 1984 .

[43]  K. Bloch,et al.  Sterol structure and membrane function. , 1981, Current topics in cellular regulation.

[44]  J. G. Roddick The steroidal glycoalkaloid α-tomatine , 1974 .

[45]  J. Weete Fungal Lipid Biochemistry , 1974, Monographs in Lipid Research.

[46]  K. Maruthachalam,et al.  Fungal Biology , 1971, Nature.