SLE as a Mating of Trees in Euclidean Geometry
暂无分享,去创建一个
[1] Dapeng Zhan,et al. Multipoint Estimates for Radial and Whole-Plane SLE , 2017, Journal of Statistical Physics.
[2] S. Benoist. Natural parametrization of SLE: the Gaussian free field point of view , 2017, 1708.03801.
[3] Samuel S. Watson,et al. Schnyder woods, SLE$_{(16)}$, and Liouville quantum gravity , 2017, 1705.03573.
[4] G. Lawler,et al. Convergence of radial loop-erased random walk in the natural parametrization , 2017, 1703.03729.
[5] S. Smirnov,et al. Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE , 2016, 1609.08527.
[6] S. Sheffield,et al. Imaginary geometry III: reversibility of SLE_κ for κ\in (4,8) , 2016 .
[7] N. Holden,et al. A distance exponent for Liouville quantum gravity , 2016, 1606.01214.
[8] D. Wilson,et al. Six-vertex model and Schramm-Loewner evolution. , 2016, Physical review. E.
[9] S. Sheffield,et al. Imaginary geometry II: Reversibility of SLE[subscript κ](ρ[subscript 1];ρ[subscript 2]) for κ ∈ (0,4) , 2016 .
[10] N. Holden,et al. Joint scaling limit of a bipolar-oriented triangulation and its dual in the peanosphere sense , 2016, 1603.01194.
[11] Jason Miller,et al. An almost sure KPZ relation for SLE and Brownian motion , 2015, The Annals of Probability.
[12] D. Wilson,et al. Bipolar orientations on planar maps and SLE$_{12}$ , 2015, 1511.04068.
[13] Xin Sun,et al. Scaling limits for the critical Fortuin-Kastelyn model on a random planar map III: finite volume case , 2015, 1510.06346.
[14] Nathanael Berestycki,et al. An elementary approach to Gaussian multiplicative chaos , 2015, 1506.09113.
[15] Xin Sun,et al. Scaling limits for the critical Fortuin-Kastelyn model on a random planar map II: local estimates and empty reduced word exponent , 2015, 1505.03375.
[16] Cheng Mao,et al. Scaling limits for the critical Fortuin–Kasteleyn model on a random planar map I: Cone times , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[17] V. Vargas,et al. Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.
[18] S. Sheffield,et al. Liouville quantum gravity as a mating of trees , 2014, 1409.7055.
[19] M. Barlow,et al. Subsequential scaling limits of simple random walk on the two-dimensional uniform spanning tree , 2014, 1407.5162.
[20] H. Duminil-Copin,et al. Convergence of Ising interfaces to Schramm's SLE curves , 2013, 1312.0533.
[21] Vincent Vargas,et al. Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.
[22] S. Sheffield,et al. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.
[23] G. Lawler,et al. Minkowski content and natural parameterization for the Schramm–Loewner evolution , 2012, 1211.4146.
[24] R. Abraham,et al. A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces , 2012, 1202.5464.
[25] S. Sheffield,et al. Imaginary geometry I: interacting SLEs , 2012, 1201.1496.
[26] S. Sheffield. Quantum gravity and inventory accumulation , 2011, 1108.2241.
[27] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.
[28] M. Barlow,et al. Exponential tail bounds for loop-erased random walk in two dimensions , 2009, 0910.5015.
[29] S. Smirnov,et al. Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.
[30] Robert Masson. The growth exponent for planar loop-erased random walk , 2008, 0806.0357.
[31] Julien Dubédat. SLE and the free field: partition functions and couplings , 2007, 0712.3018.
[32] O. Schramm,et al. Contour lines of the two-dimensional discrete Gaussian free field , 2006, math/0605337.
[33] Olivier Bernardi,et al. Bijective Counting of Tree-Rooted Maps and Shuffles of Parenthesis Systems , 2006, Electron. J. Comb..
[34] J. L. Gall,et al. Random trees and applications , 2005, math/0511515.
[35] S. Sheffield. Gaussian free fields for mathematicians , 2003, math/0312099.
[36] O. Schramm,et al. Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001, math/0112234.
[37] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .
[38] Oded Schramm,et al. Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.
[39] David Bruce Wilson,et al. Generating random spanning trees more quickly than the cover time , 1996, STOC '96.
[40] Jason Miller,et al. Brownian motion correlation in the peanosphere for κ > 8 , 2016 .
[41] S. Sheffield,et al. Imaginary geometry II: Reversibility of SLEκ(ρ1;ρ2) for κ∈(0,4). , 2016 .
[42] Gregory,et al. A NATURAL PARAMETRIZATION FOR THE SCHRAMM–LOEWNER EVOLUTION , 2011 .
[43] Gregory F. Lawler,et al. Conformally Invariant Processes in the Plane , 2005 .
[44] D. Aldous. Stochastic Analysis: The Continuum random tree II: an overview , 1991 .
[45] David Aldous,et al. The Continuum Random Tree III , 1991 .
[46] R. Mullin,et al. On the Enumeration of Tree-Rooted Maps , 1967, Canadian Journal of Mathematics.
[47] Yu. V. Prokhorov. Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .