3D Delaunay triangulation of non-uniform point distributions

Abstract In view of the simplicity and the linearity of regular grid insertion, a multi-grid insertion scheme is proposed for the three-dimensional Delaunay triangulation of non-uniform point distributions by recursive application of the regular grid insertion to an arbitrary subset of the original point set. The fundamentals and difficulties of three-dimensional Delaunay triangulation of highly non-uniformly distributed points by the insertion method are reviewed. Current strategies and methods of point insertions for non-uniformly distributed spatial points are discussed. An enhanced kd-tree insertion algorithm with a specified number of points in a cell and its natural sequence derived from a sandwich insertion scheme is also presented. The regular grid insertion, the enhanced kd-tree insertion and the multi-grid insertion have been rigorously studied with benchmark non-uniform distributions of 0.4–20 million points. It is found that the kd-tree insertion is more efficient in locating the base tetrahedron, but it is also more sensitive to the triangulation of non-uniform point distributions with a large amount of conflicting elongated tetrahedra. Including the grid construction time, multi-grid insertion is the most stable and efficient for all the uniform and non-uniform point distributions tested.

[1]  D. Hilbert Ueber die stetige Abbildung einer Line auf ein Flächenstück , 1891 .

[2]  Jack Snoeyink,et al.  A Comparison of Five Implementations of 3D Delaunay Tessellation , 2005 .

[3]  Sheng Zhou,et al.  HCPO: an efficient insertion order for incremental Delaunay triangulation , 2005, Inf. Process. Lett..

[4]  S. H. Lo,et al.  Parallel Delaunay triangulation in three dimensions , 2012 .

[5]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[6]  Kevin Buchin Constructing Delaunay Triangulations along Space-Filling Curves , 2009, ESA.

[7]  Jean-Michel Moreau,et al.  A probabilistic result on multi-dimensional Delaunay triangulations, and its application to the 2D case , 2000, Comput. Geom..

[8]  Jean-Daniel Boissonnat,et al.  Incremental construction of the delaunay triangulation and the delaunay graph in medium dimension , 2009, SCG '09.

[9]  Herbert Edelsbrunner,et al.  Incremental topological flipping works for regular triangulations , 1992, SCG '92.

[10]  Kun Zhou,et al.  Data-Parallel Octrees for Surface Reconstruction , 2011, IEEE Transactions on Visualization and Computer Graphics.

[11]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[12]  Günter Rote,et al.  Incremental constructions con BRIO , 2003, SCG '03.

[13]  Gerald E. Farin,et al.  Tighter convex hulls for rational Bézier curves , 1993, Comput. Aided Geom. Des..

[14]  Mariette Yvinec,et al.  Triangulations in CGAL , 2002, Comput. Geom..

[15]  Robert L. Scot Drysdale,et al.  A Comparison of Sequential Delaunay Triangulation Algorithms , 1997, Comput. Geom..

[16]  R. Dutton,et al.  Delaunay triangulation and 3D adaptive mesh generation , 1997 .

[17]  S. H. Lo Parallel Delaunay triangulation-Application to two dimensions , 2012 .

[18]  D. Hilbert Über die stetige Abbildung einer Linie auf ein Flächenstück , 1935 .

[19]  H. Borouchaki,et al.  Fast Delaunay triangulation in three dimensions , 1995 .

[20]  Peer Stelldinger,et al.  A topological sampling theorem for Robust boundary reconstruction and image segmentation , 2009, Discret. Appl. Math..

[21]  Luc Devroye,et al.  Expected time analysis for Delaunay point location , 2004, Comput. Geom..

[22]  Franco P. Preparata,et al.  Further results on arithmetic filters for geometric predicates , 1999, Comput. Geom..

[23]  Luc Devroye,et al.  Squarish k-d Trees , 2000, SIAM J. Comput..

[24]  S. H. Lo,et al.  A new insertion sequence for incremental Delaunay triangulation , 2013 .

[25]  G. Peano Sur une courbe, qui remplit toute une aire plane , 1890 .