Observation of four-wave mixing in slow-light silicon photonic crystal waveguides.

Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conversion efficiency is observed. Concurrently, a decrease in the conversion bandwidth is observed due to the increase in group velocity dispersion in the slow-light regime. The experimentally observed conversion efficiencies agree with the numerically modeled results.

[1]  Bill Corcoran,et al.  Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. , 2009, Optics express.

[2]  Y. Vlasov,et al.  C-band wavelength conversion in silicon photonic wire waveguides. , 2005, Optics express.

[3]  T. Krauss,et al.  Accurate determination of hole sizes in photonic crystal slabs using an optical measurement , 2009 .

[4]  M. Lipson,et al.  High-resolution spectroscopy using a frequency magnifier. , 2009, Optics express.

[5]  M. Paniccia,et al.  Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. , 2006, Optics express.

[6]  Optical Kerr Nonlinearity in Silicon Photonic Crystal Waveguides -- Four-wave mixing process , 2006 .

[7]  Thomas F. Krauss Slow light in photonic crystal waveguides , 2007 .

[8]  Isabelle Sagnes,et al.  Light transport regimes in slow light photonic crystal waveguides , 2009 .

[9]  Toshihiko Baba,et al.  Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide. , 2009, Optics letters.

[10]  M. Lipson,et al.  Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. , 2007, Optics express.

[11]  T. Tsuchizawa,et al.  Four-wave mixing in silicon wire waveguides. , 2005, Optics express.

[12]  Steve Madden,et al.  Net-gain from a parametric amplifier on a chalcogenide optical chip. , 2008, Optics express.

[13]  High-order dispersion in photonic crystal waveguides. , 2007, Optics express.

[14]  Thomas F. Krauss,et al.  Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law , 2009 .

[15]  Li Zi-yao,et al.  Fiber-based Optical Parametric Amplifiers and Their Applications , 2004 .

[16]  D. Kwong,et al.  Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides , 2008, 0807.3388.

[17]  T. Baba,et al.  Two regimes of slow-light losses revealed by adiabatic reduction of group velocity. , 2008, Physical review letters.

[18]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[19]  P Lalanne,et al.  Coupling into slow-mode photonic crystal waveguides. , 2007, Optics letters.

[20]  Reza Salem,et al.  Silicon-chip-based ultrafast optical oscilloscope , 2008, Nature.

[21]  M. Lipson,et al.  Signal regeneration using low-power four-wave mixing on silicon chip , 2008 .

[22]  J. McMillan,et al.  Theoretical Analysis of Pulse Dynamics in Silicon Photonic Crystal Wire Waveguides , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[24]  Disorder-induced coherent scattering in slow-light photonic crystal waveguides , 2009 .

[25]  Effects of waveguide length and pump power on the efficiency of wavelength conversion in silicon nanowire waveguides. , 2009, Optics letters.

[26]  T. Krauss,et al.  Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography. , 2006, Optics express.

[27]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[28]  Toshihiko Baba,et al.  Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler. , 2007, Optics express.

[29]  Jeff F. Young,et al.  Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity. , 2005, Physical review letters.

[30]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[31]  Michal Lipson,et al.  Ultrafast waveform compression using a time-domain telescope , 2009 .

[32]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[33]  Keijiro Suzuki,et al.  Fabrication and Characterization of Chalcogenide Glass Photonic Crystal Waveguides References and Links , 2022 .

[34]  H. Ishikawa,et al.  Self-phase modulation in photonic-crystal-slab line-defect waveguides , 2007 .

[35]  Sylvain Combrié,et al.  Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides. , 2009, Optics express.

[36]  M. Notomi,et al.  Waveguides, resonators and their coupled elements in photonic crystal slabs. , 2004, Optics express.

[37]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[38]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[39]  Michal Lipson,et al.  High-speed optical sampling using a silicon-chip temporal magnifier. , 2009, Optics express.

[40]  Gadi Eisenstein,et al.  Highly efficient four wave mixing in InGaP photonic crystal waveguides , 2010 .

[41]  Yang Liu,et al.  Enhanced parametric amplification in slow-light photonic crystal waveguides , 2009 .

[42]  Sharee J. McNab,et al.  Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides , 2005 .

[43]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[44]  J. D. Joannopoulos,et al.  Enhancement of nonlinear effects using photonic crystals , 2004, Nature materials.

[45]  R. Morandotti,et al.  Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures , 2008 .

[46]  C. Monat,et al.  A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration. , 2009, Optics express.

[47]  Kiyoshi Asakawa,et al.  Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect. , 2009, Optics express.

[48]  Sylvain Combrié,et al.  High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption , 2009 .

[49]  D. Moss,et al.  Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides , 2009 .

[50]  T. Krauss,et al.  Systematic design of flat band slow light in photonic crystal waveguides. , 2008, Optics express.

[51]  Masaya Notomi,et al.  Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs , 2005 .

[52]  Michal Lipson,et al.  Optical time lens based on four-wave mixing on a silicon chip. , 2008, Optics letters.

[53]  Xiaodong Yang,et al.  Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides , 2006, QELS 2006.

[54]  Michal Lipson,et al.  Ultra-low power parametric frequency conversion in a silicon microring resonator. , 2008, Optics express.

[55]  A. Melloni,et al.  Roughness induced backscattering in optical silicon waveguides. , 2010, Physical review letters.

[56]  Yoshimasa Sugimoto,et al.  Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides , 2008 .

[57]  Liam O'Faolain,et al.  Dependence of extrinsic loss on group velocity in photonic crystal waveguides. , 2007, Optics express.

[58]  Michal Lipson,et al.  160-Gb/s broadband wavelength conversion on chip using dispersion-engineered silicon waveguides , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[59]  M. Lipson,et al.  Spectral phase conjugation via temporal imaging. , 2009, Optics express.