Optimizing Excitation Coil Currents for Advanced Magnetorelaxometry Imaging

[1]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[2]  Oswaldo Baffa,et al.  Development of an optical pumped gradiometric system to detect magnetic relaxation of magnetic nanoparticles , 2019, Journal of Magnetism and Magnetic Materials.

[3]  M. Haltmeier,et al.  Douglas-Rachford algorithm for magnetorelaxometry imaging using random and deterministic activations , 2018, International Journal of Applied Electromagnetics and Mechanics.

[4]  Luc Dupré,et al.  Model-based optimal design of a magnetic nanoparticle tomographic imaging setup , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[5]  Luc Dupré,et al.  Quantitative model selection for enhanced magnetic nanoparticle imaging in magnetorelaxometry. , 2015, Medical physics.

[6]  Lutz Trahms,et al.  Magnetorelaxometry procedures for quantitative imaging and characterization of magnetic nanoparticles in biomedical applications , 2015, Biomedizinische Technik. Biomedical engineering.

[7]  Eko Supriyanto,et al.  Plane-wise sensitivity based inhomogeneous excitation fields for magnetorelaxometry imaging of magnetic nanoparticles , 2015 .

[8]  J Haueisen,et al.  Quantitative imaging of magnetic nanoparticles by magnetorelaxometry with multiple excitation coils , 2014, Physics in medicine and biology.

[9]  Lutz Trahms,et al.  Quantitative reconstruction of a magnetic nanoparticle distribution using a non-negativity constraint , 2013, Biomedizinische Technik. Biomedical engineering.

[10]  Eko Supriyanto,et al.  Magnetic nanoparticle imaging by random and maximum length sequences of inhomogeneous activation fields , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[11]  Luc Dupre,et al.  Advancements in Magnetic Nanoparticle Reconstruction Using Sequential Activation of Excitation Coil Arrays Using Magnetorelaxometry , 2012, IEEE Transactions on Magnetics.

[12]  L. Trahms,et al.  Magnetorelaxometry Assisting Biomedical Applications of Magnetic Nanoparticles , 2011, Pharmaceutical Research.

[13]  Beata Bylina,et al.  The influence of a matrix condition number on iterative methods' convergence , 2011, 2011 Federated Conference on Computer Science and Information Systems (FedCSIS).

[14]  Lutz Trahms,et al.  Cancer therapy with drug loaded magnetic nanoparticles—magnetic drug targeting , 2011 .

[15]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[16]  A. Jordan,et al.  Clinical applications of magnetic nanoparticles for hyperthermia , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[17]  Frank Ludwig,et al.  Magnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targets , 2005 .

[18]  M Burghoff,et al.  A sensor configuration for a 304 SQUID vector magnetometer. , 2004, Neurology & clinical neurophysiology : NCN.

[19]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[20]  Q. Pankhurst,et al.  TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine , 2003 .

[21]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[22]  Steven Paul Hirshman,et al.  Compact expressions for the Biot- Savart fields of a filamentary segment , 2002 .

[23]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[24]  O. J. Dunn,et al.  Applied statistics: analysis of variance and regression , 1975 .

[25]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[26]  Yonina C. Eldar,et al.  Compressed Sensing: List of contributors , 2012 .

[27]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[28]  S. Kabanikhin Definitions and examples of inverse and ill-posed problems , 2008 .

[29]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[30]  K. Pearson Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Panmixia , 1896 .