Engaging viewers through nonphotorealistic visualizations

Research in human visual cognition suggests that beautiful images can engage the visual system, encouraging it to linger in certain locations in an image and absorb subtle details. By developing aesthetically pleasing visualizations of data, we aim to engage viewers and promote prolonged inspection, which can lead to new discoveries within the data. We present three new visualization techniques that apply painterly rendering styles to vary interpretational complexity (IC), indication and detail (ID), and visual complexity (VC), image properties that are important to aesthetics. Knowledge of human visual perception and psychophysical models of aesthetics provide the theoretical basis for our designs. Computational geometry and nonphotorealistic algorithms are used to preprocess the data and render the visualizations. We demonstrate the techniques with visualizations of real weather and supernova data.

[1]  Paul Haeberli,et al.  Paint by numbers: abstract image representations , 1990, SIGGRAPH.

[2]  Christopher G. Healey,et al.  Attribute preserving dataset simplification , 2001, Proceedings Visualization, 2001. VIS '01..

[3]  Roel Vertegaal,et al.  Attentive display: paintings as attentive user interfaces , 2004, CHI EA '04.

[4]  Robert Michael Kirby,et al.  Visualizing multivalued data from 2D incompressible flows using concepts from painting , 1999, VIS '99.

[5]  David Salesin,et al.  Interactive pen-and-ink illustration , 1994, SIGGRAPH.

[6]  Penny Rheingans,et al.  Probabilistic surfaces: point based primitives to show surface uncertainty , 2002, IEEE Visualization, 2002. VIS 2002..

[7]  Aaron Hertzmann,et al.  Fast paint texture , 2002, NPAR '02.

[8]  Aaron Hertzmann,et al.  Painterly rendering with curved brush strokes of multiple sizes , 1998, SIGGRAPH.

[9]  Kwan-Liu Ma,et al.  Rendering complexity in computer-generated pen-and-ink illustrations , 2004, NPAR '04.

[10]  Kwan-Liu Ma,et al.  Visualization of multidimensional, multivariate volume data using hardware-accelerated non-photorealistic rendering techniques , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[11]  Steve Strassmann,et al.  Hairy brushes , 1986, SIGGRAPH.

[12]  Michio Shiraishi,et al.  An algorithm for automatic painterly rendering based on local source image approximation , 2000, NPAR '00.

[13]  Adrian Secord,et al.  Weighted Voronoi stippling , 2002, NPAR '02.

[14]  John P. Lewis,et al.  Texture synthesis for digital painting , 1984, SIGGRAPH.

[15]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[16]  Peter Litwinowicz,et al.  Processing images and video for an impressionist effect , 1997, SIGGRAPH.

[17]  R. Davis An Evaluation and Test of Birkhoff's Aesthetic Measure Formula , 1936 .

[18]  Binh Pham Expressive brush strokes , 1991, CVGIP Graph. Model. Image Process..

[19]  R. Baltissen,et al.  Are the Dimensions Underlying Aesthetic and Affective Judgment the Same? , 1998 .

[20]  David Salesin,et al.  Rendering parametric surfaces in pen and ink , 1996, SIGGRAPH.

[21]  Laura Tateosian,et al.  Nonphotorealistic Visualization of Multidimensional Datasets Pennsylvania. She Received a Bachelor of Arts Degree in Mathematics from Towson Univer , 2002 .

[22]  David S. Ebert,et al.  Volume Illustration: Nonphotorealistic Rendering of Volume Models , 2001, IEEE Trans. Vis. Comput. Graph..

[23]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[24]  David S. Ebert,et al.  Volume illustration: non-photorealistic rendering of volume models , 2000 .

[25]  D. Berlyne,et al.  Aesthetics and psychobiology , 1975 .

[26]  Barbara J. Meier Painterly rendering for animation , 1996, SIGGRAPH.

[27]  David S. Ebert,et al.  Non-photorealistic volume rendering using stippling techniques , 2002, IEEE Visualization, 2002. VIS 2002..

[28]  Siu Chi Hsu,et al.  Drawing and animation using skeletal strokes , 1994, SIGGRAPH.

[29]  James T. Enns,et al.  Perceptually based brush strokes for nonphotorealistic visualization , 2004, TOGS.

[30]  David Salesin,et al.  Computer-generated pen-and-ink illustration , 1994, SIGGRAPH.

[31]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[32]  David H. Laidlaw,et al.  Visualizing diffusion tensor images of the mouse spinal cord , 1998 .

[33]  David Salesin,et al.  Orientable textures for image-based pen-and-ink illustration , 1997, SIGGRAPH.

[34]  Eric B. Lum,et al.  Feature-Enhanced Visualization of Multidimensional, Multivariate Volume Data Using Non-photorealistic Rendering Techniques , 2002 .

[35]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[36]  David S Wooding,et al.  Eye movements of large populations: II. Deriving regions of interest, coverage, and similarity using fixation maps , 2002, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.