Bayesian nonparametric hierarchical modeling.

In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

[1]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[2]  Cécile Proust-Lima,et al.  Estimation of linear mixed models with a mixture of distribution for the random effects , 2005, Comput. Methods Programs Biomed..

[3]  Inchi Hu,et al.  Flexible modelling of random effects in linear mixed models - A Bayesian approach , 2008, Comput. Stat. Data Anal..

[4]  Daniel S. Nagin,et al.  Advances in Group-Based Trajectory Modeling and an SAS Procedure for Estimating Them , 2007 .

[5]  D. Gianola,et al.  Bayesian Longitudinal Data Analysis with Mixed Models and Thick-tailed Distributions using MCMC , 2004 .

[6]  D. Dunson,et al.  Kernel stick-breaking processes. , 2008, Biometrika.

[7]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[8]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[9]  D. Dunson,et al.  Posterior simulation across nonparametric models for functional clustering , 2011 .

[10]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[11]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[12]  David B. Dunson,et al.  Bayesian Inference on Changes in Response Densities Over Predictor Clusters , 2008, Journal of the American Statistical Association.

[13]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[14]  P. Müller,et al.  A method for combining inference across related nonparametric Bayesian models , 2004 .

[15]  A. Durio E. D. Isaia,et al.  A quick procedure for model selection in the case of mixture of normal densities , 2007, Comput. Stat. Data Anal..

[16]  D. Böhning,et al.  Analysis of longitudinal data using a finite mixture model , 1994 .

[17]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[18]  G. Verbeke,et al.  A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .

[19]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[20]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[21]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[22]  Tsung-I Lin,et al.  Bayesian analysis of hierarchical linear mixed modeling using the multivariate t distribution , 2007 .

[23]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[24]  B. Mallick,et al.  Functional clustering by Bayesian wavelet methods , 2006 .

[25]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[26]  James O. Berger,et al.  Ockham's Razor and Bayesian Analysis , 1992 .

[27]  Peter Schlattmann,et al.  Estimating the number of components in a finite mixture model: the special case of homogeneity , 2003, Comput. Stat. Data Anal..

[28]  J G Ibrahim,et al.  A semiparametric Bayesian approach to the random effects model. , 1998, Biometrics.

[29]  Glen Takahara,et al.  Independent and Identically Distributed Monte Carlo Algorithms for Semiparametric Linear Mixed Models , 2002 .

[30]  Peter Müller,et al.  A Bayesian Population Model with Hierarchical Mixture Priors Applied to Blood Count Data , 1997 .