Fusion Approach for Optimizing Web Search Performance

This paper describes a Web search optimization study that investigates both static and dynamic tuning methods for optimizing system performance. We extended the conventional fusion approach by introducing the “dynamic tuning” process with which to optimize the fusion formula that combines the contributions of diverse sources of evidence on the Web. By engaging in iterative dynamic tuning process, where we successively fine-tuned the fusion parameters based on the cognitive analysis of immediate system feedback, we were able to significantly increase the retrieval performance.Our results show that exploiting the richness of Web search environment by combining multiple sources of evidence is an effective strategy.

[1]  Amit Singhal,et al.  A case study in web search using TREC algorithms , 2001, WWW '01.

[2]  Amit Singhal,et al.  Pivoted document length normalization , 1996, SIGIR 1996.

[3]  David Hawking,et al.  Overview of the TREC-2002 Web Track , 2002, TREC.

[4]  Chris Buckley,et al.  Using Query Zoning and Correlation Within SMART: TREC 5 , 1996, TREC.

[5]  Jong-Hak Lee,et al.  Analyses of multiple evidence combination , 1997, SIGIR '97.

[6]  Paul Thompson,et al.  A combination of expert opinion approach to probabilistic information retrieval, part 2: Mathematical treatment of CEO model 3 , 1990, Inf. Process. Manag..

[7]  David Hawking,et al.  Overview of the TREC-2001 Web track , 2002 .

[8]  Donna K. Harman,et al.  Overview of the Eighth Text REtrieval Conference (TREC-8) , 1999, TREC.

[9]  Jacques Savoy,et al.  Report on the TREC-8 Experiment: Searching on the Web and in Distributed Collections , 1999, TREC.

[10]  Kiduk Yang Combining Multiple Sources of Evidence to Enhance Web Search Performance , 2014 .

[11]  Kiduk Yang Combining Text- and Link-based Retrieval Methods for Web IR , 2001, TREC.

[12]  Ning Yu,et al.  WIDIT: Fusion-Based Approach to Web Search Optimization , 2005, AIRS.

[13]  Stephen Tomlinson Robust, Web and Genomic Retrieval with Hummingbird SearchServer at TREC 2003 , 2003, TREC.

[14]  Jacques Savoy,et al.  Report on the TREC-9 Experiment: Link-based Retrieval and Distributed Collections , 2000, TREC.

[15]  Andrew MacFarlane,et al.  Pliers at Trec 2002 , 2002, TREC.

[16]  David Carmel,et al.  Topic Distillation with Knowledge Agents , 2002, TREC.

[17]  Garrison W. Cottrell,et al.  Automatic combination of multiple ranked retrieval systems , 1994, SIGIR '94.

[18]  James Allan,et al.  Automatic Query Expansion Using SMART: TREC 3 , 1994, TREC.

[19]  Alan F. Smeaton,et al.  Dublin City University Experiments in Connectivity Analysis for TREC-9 , 2000, TREC.

[20]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[21]  장우권,et al.  A Study on the Research Trend of Library Marketing Promotion , 2015 .

[22]  Djoerd Hiemstra,et al.  The Importance of Prior Probabilities for Entry Page Search , 2002, SIGIR '02.

[23]  Donna K. Harman,et al.  Results and Challenges in Web Search Evaluation , 1999, Comput. Networks.

[24]  Stephen E. Robertson,et al.  Effective site finding using link anchor information , 2001, SIGIR '01.

[25]  Yiqun Liu,et al.  THU TREC2002 Web Track Experiments , 2002 .

[26]  Peter Bailey,et al.  Overview of the TREC-8 Web Track , 2000, TREC.

[27]  Paul Thompson,et al.  A combination of expert opinion approach to probabilistic information retrieval, part 1: The conceptual model , 1990, Inf. Process. Manag..

[28]  Stephen E. Robertson,et al.  Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.

[29]  Kui-Lam Kwok,et al.  Improving Weak Ad-Hoc Retrieval by Web Assistance and Data Fusion , 2005, AIRS.

[30]  W. Bruce Croft,et al.  Improving the effectiveness of information retrieval with local context analysis , 2000, TOIS.

[31]  W. Scott Spangler,et al.  Clustering hypertext with applications to web searching , 2000, HYPERTEXT '00.