SQL-to-Text Generation with Graph-to-Sequence Model

Previous work approaches the SQL-to-text generation task using vanilla Seq2Seq models, which may not fully capture the inherent graph-structured information in SQL query. In this paper, we propose a graph-to-sequence model to encode the global structure information into node embeddings. This model can effectively learn the correlation between the SQL query pattern and its interpretation. Experimental results on the WikiSQL dataset and Stackoverflow dataset show that our model outperforms the Seq2Seq and Tree2Seq baselines, achieving the state-of-the-art performance.

[1]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[2]  Yue Zhang,et al.  A Graph-to-Sequence Model for AMR-to-Text Generation , 2018, ACL.

[3]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[4]  Alvin Cheung,et al.  Summarizing Source Code using a Neural Attention Model , 2016, ACL.

[5]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[6]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[7]  Georgia Koutrika,et al.  Explaining structured queries in natural language , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[8]  Sanjeev Arora,et al.  A Simple but Tough-to-Beat Baseline for Sentence Embeddings , 2017, ICLR.

[9]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[10]  Richard Socher,et al.  Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning , 2018, ArXiv.

[11]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[12]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[13]  Hang Li,et al.  “ Tony ” DNN Embedding for “ Tony ” Selective Read for “ Tony ” ( a ) Attention-based Encoder-Decoder ( RNNSearch ) ( c ) State Update s 4 SourceVocabulary Softmax Prob , 2016 .

[14]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[15]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[16]  Pradeep Ravikumar,et al.  D2KE: From Distance to Kernel and Embedding , 2018, ArXiv.

[17]  Yannis E. Ioannidis,et al.  DBMSs Should Talk Back Too , 2009, CIDR.

[18]  Jens Lehmann,et al.  Sorry, i don't speak SPARQL: translating SPARQL queries into natural language , 2013, WWW.

[19]  Pradeep Ravikumar,et al.  Word Mover’s Embedding: From Word2Vec to Document Embedding , 2018, EMNLP.

[20]  Yansong Feng,et al.  Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks , 2018, ArXiv.

[21]  Yoshimasa Tsuruoka,et al.  Tree-to-Sequence Attentional Neural Machine Translation , 2016, ACL.

[22]  S. V. N. Vishwanathan,et al.  Graph kernels , 2007 .