Measurement-device-independent quantum key distribution for nonstandalone networks

Guan-Jie Fan-Yuan (范元冠杰), 2, 3 Feng-Yu Lu (卢奉宇), 2, 3 Shuang Wang (王双), 2, 3, ∗ Zhen-Qiang Yin (银振强), 2, 3 De-Yong He (何德勇), 2, 3 Zheng Zhou (周政), 2, 3 Jun Teng (滕 俊), 2, 3 Wei Chen (陈巍), 2, 3 Guang-Can Guo (郭光灿), 2, 3 and Zheng-Fu Han (韩正甫) 2, 3 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China (Dated: September 8, 2021)

[1]  Stefan Bäuml,et al.  Limitations on quantum key repeaters , 2014, Nature Communications.

[2]  Tao Zhang,et al.  Field Experiment on a “Star Type” Metropolitan Quantum Key Distribution Network , 2009, IEEE Photonics Technology Letters.

[3]  Y.-H. Zhou,et al.  Making the decoy-state measurement-device-independent quantum key distribution practically useful , 2015, 1502.01262.

[4]  Xiang‐Bin Wang,et al.  Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors , 2012, 1207.0392.

[5]  Thomas Vidick,et al.  Practical device-independent quantum cryptography via entropy accumulation , 2018, Nature Communications.

[6]  Xiongfeng Ma,et al.  Phase-Matching Quantum Key Distribution , 2018, Physical Review X.

[7]  Gui-Lu Long,et al.  Device-independent quantum secure direct communication against collective attacks. , 2020, Science bulletin.

[8]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[9]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[10]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[11]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[12]  Tao Zhang,et al.  Field test of wavelength-saving quantum key distribution network. , 2010, Optics letters.

[13]  R. Penty,et al.  Quantum key distribution without detector vulnerabilities using optically seeded lasers , 2015, Nature Photonics.

[14]  G. Guo,et al.  Optimizing Decoy‐State Protocols for Practical Quantum Key Distribution Systems , 2021, Advanced Quantum Technologies.

[15]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[16]  Qiaoyan Wen,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2012 .

[17]  Gui-Lu Long,et al.  Measurement-device-independent quantum secure direct communication , 2018, Science China Physics, Mechanics & Astronomy.

[18]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[19]  Dong Liu,et al.  Field and long-term demonstration of a wide area quantum key distribution network , 2014, Optics express.

[20]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[21]  Umesh V. Vazirani,et al.  Classical command of quantum systems , 2013, Nature.

[22]  Takashi Yamamoto,et al.  Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol , 2014, Scientific Reports.

[23]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[24]  Hoi-Kwong Lo,et al.  Free-space reconfigurable quantum key distribution network , 2015, 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS).

[25]  Kai Chen,et al.  Metropolitan all-pass and inter-city quantum communication network. , 2010, Optics express.

[26]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[27]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[28]  Xiongfeng Ma,et al.  Alternative schemes for measurement-device-independent quantum key distribution , 2012, 1204.4856.

[29]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.

[30]  Andrew Chi-Chih Yao,et al.  Quantum cryptography with imperfect apparatus , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[31]  Shuang Wang,et al.  Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution. , 2015, Physical review letters.

[32]  Liuguo Yin,et al.  Measurement-device-independent quantum communication without encryption. , 2018, Science bulletin.

[33]  Hongyi Zhou,et al.  Security assessment and key management in a quantum network , 2019, ArXiv.

[34]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[35]  Brian C. Britt Modeling viral diffusion using quantum computational network simulation , 2020, Quantum Engineering.

[36]  Zong-Wen Yu,et al.  Twin-field quantum key distribution with large misalignment error , 2018, Physical Review A.

[37]  Erika Andersson,et al.  Measurement-device-independent quantum digital signatures , 2016 .

[38]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[39]  Chip Elliott,et al.  Current status of the DARPA Quantum Network , 2005 .

[40]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[41]  Qin Wang,et al.  Experimental three-state measurement-device-independent quantum key distribution with uncharacterized sources. , 2020, Optics letters.

[42]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[43]  G. Guo,et al.  Measurement-device-independent quantum key distribution robust against environmental disturbances , 2017 .

[44]  Zhen-Qiang Yin,et al.  Afterpulse Analysis for Quantum Key Distribution , 2018, Physical Review Applied.

[45]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[46]  Jian-Wei Pan,et al.  An integrated space-to-ground quantum communication network over 4,600 kilometres , 2021, Nature.

[47]  N. Gisin,et al.  Long-term performance of the SwissQuantum quantum key distribution network in a field environment , 2011, 1203.4940.

[48]  C. Elliott Building the quantum network* , 2002 .

[49]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[50]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[51]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[52]  Qin Wang,et al.  Proof-of-Principle Demonstration of Passive Decoy-State Quantum Digital Signatures Over 200 km , 2018, Physical Review Applied.

[53]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[54]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[55]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[56]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[57]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[58]  H. Lo,et al.  Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw , 2011, 1111.3413.

[59]  G. Guo,et al.  Faraday-Michelson system for quantum cryptography. , 2005, Optics letters.

[60]  J. Dynes,et al.  Unconditionally secure one-way quantum key distribution using decoy pulses , 2007, 2007 Quantum Electronics and Laser Science Conference.

[61]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[62]  Yang Liu,et al.  Measurement-device-independent quantum key distribution over untrustful metropolitan network , 2015, 1509.08389.

[63]  Umesh V. Vazirani,et al.  Fully device independent quantum key distribution , 2012, Commun. ACM.

[64]  A. Acín,et al.  Secure device-independent quantum key distribution with causally independent measurement devices. , 2010, Nature communications.

[65]  Huawang Qin,et al.  Establishing rational networking using the DL04 quantum secure direct communication protocol , 2018, Quantum Inf. Process..

[66]  Fengyou Sun,et al.  Performance Analysis of Quantum Channels , 2018, 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[67]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[68]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[69]  G. S. Vernam,et al.  Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic Communications , 1926, Transactions of the American Institute of Electrical Engineers.

[70]  J F Dynes,et al.  Experimental measurement-device-independent quantum digital signatures , 2017, Nature Communications.

[71]  Qin Wang,et al.  Practical Phase-Modulation Stabilization in Quantum Key Distribution via Machine Learning , 2019, Physical Review Applied.

[72]  Ping Zhou,et al.  Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs , 2006 .

[73]  James F. Dynes,et al.  A quantum access network , 2013, Nature.

[74]  Marco Lucamarini,et al.  10-Mb/s Quantum Key Distribution , 2018, Journal of Lightwave Technology.

[75]  Wenjie Liu,et al.  Cryptanalysis of Controlled Bidirectional Quantum Secure Direct Communication Network Using Classical XOR Operation and Quantum Entanglement , 2017, IEEE Communications Letters.

[76]  Rong Wang,et al.  Twin-Field Quantum Key Distribution without Phase Postselection , 2018, Physical Review Applied.

[77]  Gerd Leuchs,et al.  Device calibration impacts security of quantum key distribution. , 2011, Physical review letters.