Knowledge diffusion dynamics and network properties of face-to-face interactions

Abstract.This paper aims to understand some of the mechanisms which dominate the phenomenon of knowledge diffusion in the process that is called ‘interactive learning’. We examine how knowledge spreads in a network in which agents interact by word of mouth. The social network is structured as a network graph consisting of agents (vertices) and connections (edges) and is situated on a wrapped cellular automata grid forming a torus. The target of this simulation is to test whether knowledge diffuses in a homogeneous way or whether it follows some biased path towards convergence or divergence.

[1]  Steven E. Wallis,et al.  Efficient Forward Chaining for Declarative Rules in a Multi-Agent Modelling Language , 1995 .

[2]  Robin Wilson,et al.  Graphs an Introductory Approach , 1990, The Mathematical Gazette.

[3]  Sanjeev Goyal,et al.  A Theory of Learning with Heterogeneous Agents , 1995 .

[4]  W. Edward Steinmueller,et al.  Will New Information and Communication Technologies Improve the 'Codification' of Knowledge? , 2000 .

[5]  Joshua M. Epstein,et al.  Growing artificial societies , 1996 .

[6]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[7]  Glenn Ellison Learning, Local Interaction, and Coordination , 1993 .

[8]  Michael P. Todaro,et al.  World Development Report 1990. , 1990 .

[9]  Paul A. David,et al.  The explicit economics of knowledge codification and tacitness , 2000 .

[10]  J. Church Human Development Report , 2001 .

[11]  George A. Akerlof Social Distance and Social Decisions , 1997 .

[12]  J. Katz,et al.  Structural reforms and technological behaviour: The sources and nature of technological change in Latin America in the 1990s , 2001 .

[13]  Steven Durlauf,et al.  Growing artificial societies , 1997, Complex.

[14]  Bart Nooteboom,et al.  Innovation, Learning and Industrial Organisation , 1999 .

[15]  Robin Cowan,et al.  Network Structure and the Diffusion of Knowledge , 2004 .

[16]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[17]  Diana Hicks,et al.  A Morphology of Japanese and European Corporate Research Networks , 1996 .

[18]  Ulrich Schwalbe,et al.  Evolution, interaction, and Nash equilibria , 1996 .

[19]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[20]  Glenn Ellison,et al.  Word-of-Mouth Communication and Social Learning , 1995 .

[21]  Carson C. Chow,et al.  Small Worlds , 2000 .

[22]  L. Anderlini,et al.  Path Dependence and Learning from Neighbors , 1996 .

[23]  Eric A. von Hippel,et al.  How Open Source Software Works: 'Free' User-to-User Assistance? , 2000 .

[24]  M. Chwe Communication and Coordination in Social Networks , 2000 .

[25]  Nathan Rosenberg,et al.  Inside the Black Box: Technology and Economics , 1984 .

[26]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[27]  R. Nelson,et al.  Investment in humans, technological diffusion and economic growth , 1965 .

[28]  S. Goyal,et al.  Learning from neighbours , 1998 .

[29]  Uwe Cantner,et al.  The Network of Innovators in Jena: An Application of Social Network Analysis , 2006 .

[30]  Robin Cowan,et al.  The dynamics of collective invention , 2003 .

[31]  P. Cohendet,et al.  The Economics Of Knowledge: The Debate About Codification And Tacit Knowledge , 2000 .