Asynchronous integration with phantom meshes

Asynchronous variational integration of layered contact models provides a framework for robust collision handling, correct physical behavior, and guaranteed eventual resolution of even the most difficult contact problems. Yet, even for low-contact scenarios, this approach is significantly slower compared to its less robust alternatives---often due to handling of stiff elastic forces in an explicit framework. We propose a method that retains the guarantees, but allows for variational implicit integration of some of the forces, while maintaining asynchronous integration needed for contact handling. Our method uses phantom meshes for calculations with stiff forces, which are then coupled to the original mesh through constraints. We use the augmented discrete Lagrangian of the constrained system to derive a variational integrator with the desired conservation properties.

[1]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[2]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[3]  Ernst Hairer,et al.  Variable time step integration with symplectic methods , 1997 .

[4]  Eitan Grinspun,et al.  TRACKS: toward directable thin shells , 2007, SIGGRAPH 2007.

[5]  David Harmon,et al.  Asynchronous contact mechanics , 2009, SIGGRAPH 2009.

[6]  C. Lanczos The variational principles of mechanics , 1949 .

[7]  J. Marsden,et al.  Variational integrators for constrained dynamical systems , 2008 .

[8]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[9]  Steve Capell,et al.  Physically based rigging for deformable characters , 2005, SCA '05.

[10]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[11]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[12]  P. Wriggers Computational contact mechanics , 2012 .

[13]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[14]  B. Leimkuhler,et al.  A reversible averaging integrator for multiple time-scale dynamics , 2001 .

[15]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[16]  Robert Bridson,et al.  Animating developable surfaces using nonconforming elements , 2008, ACM Trans. Graph..

[17]  Eric Barth,et al.  Algorithms for constrained molecular dynamics , 1995, J. Comput. Chem..

[18]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[19]  Markus H. Gross,et al.  Optimized Spatial Hashing for Collision Detection of Deformable Objects , 2003, VMV.

[20]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[21]  Nadia Magnenat-Thalmann,et al.  Implicit midpoint integration and adaptive damping for efficient cloth simulation: Collision Detection and Deformable Objects , 2005 .

[22]  M. Leok Variational Integrators , 2012 .

[23]  Raanan Fattal,et al.  Efficient simulation of inextensible cloth , 2007, SIGGRAPH 2007.

[24]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, SIGGRAPH 2009.

[25]  Michael T. Heath,et al.  Asynchronous multi‐domain variational integrators for non‐linear problems , 2008 .

[26]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Hybrid Simulation of Deformable Solids , 2022 .

[27]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[28]  Doug L. James,et al.  Subspace self-collision culling , 2010, ACM Transactions on Graphics.

[29]  Nadia Magnenat-Thalmann,et al.  Implicit midpoint integration and adaptive damping for efficient cloth simulation , 2005, Comput. Animat. Virtual Worlds.