Controlled quantum secure direct communication by entanglement distillation or generalized measurement

We propose two controlled quantum secure communication schemes by entanglement distillation or generalized measurement. The sender Alice, the receiver Bob and the controllers David and Cliff take part in the whole schemes. The supervisors David and Cliff can control the information transmitted from Alice to Bob by adjusting the local measurement angles $$\theta _4$$θ4 and $$\theta _3$$θ3. Bob can verify his secret information by classical one-way function after communication. The average amount of information is analyzed and compared for these two methods by MATLAB. The generalized measurement is a better scheme. Our schemes are secure against some well-known attacks because classical encryption and decoy states are used to ensure the security of the classical channel and the quantum channel.

[1]  Nguyen Ba An Efficient semi-direct three-party quantum secure exchange of information , 2007 .

[2]  Tanja Lange,et al.  Post-quantum cryptography , 2008, Nature.

[3]  Zhou Ping,et al.  Quantum Secure Direct Communication Network with Two-Step Protocol , 2006 .

[4]  Yi-You Nie,et al.  Controlled Dense Coding between Multi-Parties , 2009 .

[5]  Li Dong,et al.  Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement , 2011 .

[6]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[7]  Yao-Hsin Chou,et al.  Controlled Bidirectional Quantum Secure Direct Communication , 2014, TheScientificWorldJournal.

[8]  Zhang Zhan-jun,et al.  Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations , 2005 .

[9]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[10]  Juan Xu,et al.  Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states , 2013, Quantum Inf. Process..

[11]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[12]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[13]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[14]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[15]  Yan Xia,et al.  Controlled Quantum Dense Coding in a Four-particle Non-maximally Entangled State via Local Measurements , 2005 .

[16]  Tzonelih Hwang,et al.  Multiparty controlled quantum secure direct communication based on quantum search algorithm , 2013, Quantum Inf. Process..

[17]  G. Guo,et al.  Controlled dense coding using the Greenberger-Horne-Zeilinger state , 2001 .

[18]  Song-song Li,et al.  Dense Coding with Cluster State Via Local Measurements , 2012 .

[19]  G. Long,et al.  General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.

[20]  Andrzej Grudka,et al.  Symmetric scheme for superdense coding between multiparties , 2002 .

[21]  Xiang‐Bin Wang Fault tolerant quantum key distribution protocol with collective random unitary noise , 2005 .

[22]  Monireh Houshmand,et al.  Efficient controlled quantum secure direct communication based on GHZ-like states , 2014, Quantum Information Processing.

[23]  Qiao-Yan Wen,et al.  Quantum secure direct communication with cluster states , 2010 .

[24]  Guo-qiang Huang,et al.  Controlled Dense Coding using Generalized GHZ-type State , 2010 .

[25]  Samuel L. Braunstein,et al.  Dense coding for continuous variables , 1999, quant-ph/9910010.

[26]  Song-Song Li,et al.  Controlled Dense Coding with Symmetric State , 2009 .

[27]  Quan Zhang,et al.  Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state , 2006 .

[28]  Dongyang Long,et al.  Quantum Secure Direct Communication with Two-Photon Four-Qubit Cluster States , 2012 .

[29]  Tang Chao-jing,et al.  Quantum Secure Communication Scheme with W State , 2007 .

[30]  Xiaoqing Tan,et al.  Improved Three-Party Quantum Secret Sharing Based on Bell States , 2013 .

[31]  Su-Juan Qin,et al.  Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state , 2010 .

[32]  Li Dong,et al.  Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping , 2009 .

[33]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[34]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[35]  Siddharth Patwardhan,et al.  Efficient Controlled Quantum Secure Direct Communication Protocols , 2015, ArXiv.

[36]  Xiaolan Li,et al.  Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state , 2013, Quantum Inf. Process..

[37]  Jian Huang,et al.  Dense Coding with Extended GHZ-W State via Local Measurements , 2011 .