Review: The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources

Underground geological storage of CO2 in deep saline aquifers is considered for reducing greenhouse gases emissions into the atmosphere. However, some issues were raised with regard to the potential hazards to shallow groundwater resources from CO2 leakage, brine displacement and pressure build-up. An overview is provided of the current scientific knowledge pertaining to the potential impact on shallow groundwater resources of geological storage of CO2 in deep saline aquifers, identifying knowledge gaps for which original research opportunities are proposed. Two main impacts are defined and discussed therein: the near-field impact due to the upward vertical migration of free-phase CO2 to surficial aquifers, and the far-field impact caused by large-scale displacement of formation waters by the injected CO2. For the near-field, it is found that numerical studies predict possible mobilization of trace elements but concentrations are rarely above the maximum limit for potable water. For the far-field, numerical studies predict only minor impacts except for some specific geological conditions such as high caprock permeability. Despite important knowledge gaps, the possible environmental impacts of geological storage of CO2 in deep saline aquifers on shallow groundwater resources appears to be low, but much more work is required to evaluate site specific impacts.RésuméLe stockage géologique souterrain de gaz carbonique dans des aquifères salins profonds est envisagé pour la réduction des émissions de gaz à effet de serre dans l’atmosphère. Cependant, certains risques potentiels vis à vis des nappes superficielles ont été invoqués du fait des fuites de CO2: migration de saumure, augmentations de pression. Une vue d’ensemble d’état de l’art concernant l’impact potentiel sur les ressources superficielles en eau souterraine du stockage géologique du CO2 dans des aquifères salins profonds est présentée, identifiant des lacunes de connaissances pour lesquelles des opportunités de recherche originale sont proposées. Deux impacts principaux sont définis et discutés ci-dessous : l’impact en champ proche dû à la migration verticale ascendante de la phase CO2 libre vers les aquifères superficiels, et l’impact en champ lointain causé par le déplacement à grande échelle des eaux de l’aquifère induit par le CO2 injecté. Pour le champ proche, les simulations numériques prévoient la mobilisation possible d’éléments trace ; néanmoins, les concentrations sont rarement au dessus du seuil de potabilité. Pour le champ lointain, les simulations numériques prévoient seulement des impacts mineurs, à l’exception de certains contextes géologiques spécifiques tels ceux comportant des roches de couvertures de forte perméabilité. En dépit d’importantes lacunes de connaissances, les impacts environnementaux potentiels du stockage géologique souterrain de CO2 dans des aquifères salins profonds, sur les nappes superficielles, apparaissent faibles. Mais beaucoup plus de travail est nécessaire pour évaluer les impacts spécifiques sur site.ResumenEl almacenamiento geológico subterráneo de CO2 en acuíferos salinos profundos es tenido en cuenta para la reducción de la emisión de gases invernaderos en la atmósfera. Sin embargo se plantearon algunas cuestiones en relación a los riesgos potenciales para los recursos de agua subterránea someros a partir de la filtración de CO2 , desplazamiento de las salmueras y acumulación de presión. Se expone una visión general del conocimiento científico actual concerniente al impacto potencial del almacenamiento geológico de CO2 en acuíferos salinos profundos sobre los recursos de agua subterránea someros, identificando los baches de conocimiento para lo cual se proponen oportunidades originales de investigación. Se definen y discuten dos de los principales impactos: el impacto de campo local debido a la migración vertical ascendente de la fase libre de CO2 a los acuíferos superficiales, y el impacto de campo a gran distancia causado por desplazamiento a gran escala de aguas de formación con el CO2 inyectado. Se encontró para el campo local que los estudios numéricos predicen la posible movilización de elementos trazadores pero las concentraciones están raramente por encima del límite máximo para agua potable. Para el campo a gran distancia, los estudios numéricos predicen solamente impactos menores, excepto para algunas condiciones geológicas específicas tales como alta permeabilidad de la roca de cubierta. A pesar de los importantes baches en el conocimiento, los posibles impactos ambientales sobre los recursos de agua subterránea somera debido al almacenamiento geológico de CO2 en acuíferos salinos profundos parecen ser bajos, pero se requiere mucho más trabajo para evaluar los impactos en sitios específicos.摘要摘要: 深部咸水层中二氧化碳的地质封存被认为可以减少大气圈中温室气体的排放。但考虑到二氧化碳封存造成的泄漏、卤水位移和压力积聚,它可能对浅层地下水资源造成潜在的危害。本文总结了现有的相关知识,对深部咸水层中二氧化碳地质封存对浅层地下水资源的潜在影响进行了综述,并理出了为原创性研究提供机会的知识缺口。本文定义并讨论了两个主要影响:自由态的二氧化碳向浅部含水层的垂直迁移造成的近场地影响;二氧化碳的注入导致地层水大尺度位移造成的远场地影响。在近场地影响中,数值研究能预测痕量元素的运移,但含量很少超过饮用水中规定的最高允许值。数值研究结果显示远场地影响极小,但盖层渗透性较高的场地除外。尽管存在重要的知识缺口,深部咸水层中二氧化碳的地下地质封存对浅层地下水资源的可能环境影响小,但评估特定场地的具体影响时需要做更多工作。ResumoO armazenamento subterrâneo de CO2 em aquíferos salinos profundos está a ser considerado, com vista à redução das emissões de gases de estufa para a atmosfera. No entanto, têm-se levantado algumas questões relacionadas com os riscos potenciais para as águas subterrâneas menos profundas, resultantes da drenância do CO2, da deslocação das salmouras e da subida da pressão. É feita uma revisão dos conhecimentos científicos atuais sobre o impacte potencial do armazenamento geológico subterrâneo de CO2 nos recursos hídricos subterrâneos menos profundos, identificando lapsos de conhecimento para os quais são sugeridas oportunidades de pesquisa futura. Dois impactes principais são definidos e discutidos neste documento: o impacte, próximo da zona de introdução do CO2, da migração vertical da fase livre de CO2 para os aquíferos superiores, e o impacte, nos campos mais afastados, causado pela deslocação em larga escala de águas da formação, influenciada pela injeção de CO2. Para o campo próximo, verificou-se que os estudos numéricos predizem uma possível mobilização de elementos traço, mas as concentrações raramente estrão acima do limite máximo para águas potáveis. Para o campo mais afastado, os estudos numéricos predizem apenas impactes menores, excepto para algumas condições geológicas específicas, tal como uma permeabilidade elevada das rochas de cobertura. Apesar de lapsos importantes de conhecimento, os impactes ambientais do armazenamento geológico de CO2 em aquíferos salinos profundos nos recursos hídricos subterrâneos menos profundos parece ser pequeno, mas é necessária muito mais investigação para avaliar os reais impactes em cada local específico.

[1]  Karsten Pruess,et al.  User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code , 2008 .

[2]  Jens Birkholzer,et al.  A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models , 2010 .

[3]  Michael A. Celia,et al.  Assessing the potential for CO2 leakage, particularly through wells, from geological storage sites , 2013 .

[4]  Kenzi Karasaki,et al.  Numerical investigation for the impact of CO2 geologic sequestration on regional groundwater flow , 2009 .

[5]  E. M. Winter,et al.  Disposal of carbon dioxide in aquifers in the U.S. , 1995 .

[6]  Liange Zheng,et al.  Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana , 2010 .

[7]  Keni Zhang,et al.  Modeling Basin‐ and Plume‐Scale Processes of CO2 Storage for Full‐Scale Deployment , 2009, Ground water.

[8]  A. E. McGrath,et al.  Evaluation and Mitigation of Landfill Gas Impacts on Cadmium Leaching from Native Soils , 2007 .

[9]  Chin-Fu Tsang,et al.  DECOVALEX Project: from 1992 to 2007 , 2009 .

[10]  Jan M Nordbotten,et al.  Practical Modeling Approaches for Geological Storage of Carbon Dioxide , 2009, Ground water.

[11]  Jens Birkholzer,et al.  Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage , 2009 .

[12]  Jean-Philippe Nicot,et al.  Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: An example from the Texas Gulf Coast Basin , 2008 .

[13]  S. Bachu Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change , 2003 .

[14]  C. Simmons,et al.  Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. , 2001, Journal of contaminant hydrology.

[15]  David R. Cole,et al.  Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA , 2009 .

[16]  Rajesh J. Pawar,et al.  The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration , 2010 .

[17]  S. Holloway,et al.  The potential for aquifer disposal of carbon dioxide in the UK , 1993 .

[18]  J. McIntosh,et al.  Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems , 2007 .

[19]  G. Ramstein,et al.  Long-term hydrodynamic response induced by past climatic and geomorphologic forcing: The case of the Paris basin, France , 2007 .

[20]  W. W. Wood,et al.  Large-Scale Natural Gradient Tracer Test in Sand and Gravel, , 1991 .

[21]  K. Pruess,et al.  TOUGH2 User's Guide Version 2 , 1999 .

[22]  Rebecca C. Smyth,et al.  Assessing risk to fresh water resources from long term CO2 injection- laboratory and field studies , 2009 .

[23]  Sookyun Wang,et al.  Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations; effect of dissolution kinetics , 2004 .

[24]  E. A. Sudicky,et al.  Simulating the impact of glaciations on continental groundwater flow systems: 2. Model application to the Wisconsinian glaciation over the Canadian landscape , 2008 .

[25]  J. Allison,et al.  MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3. 0 user's manual , 1991 .

[26]  Karsten Pruess,et al.  On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir , 2008 .

[27]  John A. Cherry,et al.  Migration of contaminants in groundwater at a landfill: A case study: 4. A natural-gradient dispersion test , 1983 .

[28]  Mohamed Azaroual,et al.  Geochemical and solute transport modelling for CO2 storage, what to expect from it? , 2008 .

[29]  Irina Gaus,et al.  Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks , 2010 .

[30]  C. Bethke Geochemical and Biogeochemical Reaction Modeling , 2007 .

[31]  Jens Birkholzer,et al.  On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage , 2009 .

[32]  William D. Gunter,et al.  Sedimentary basins and greenhouse gases: a serendipitous association , 1999 .

[33]  P. Lichtner,et al.  Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA , 2007 .

[34]  David A. C. Manning,et al.  Bethke, C.M. Geochemical and Biogeochemical Reaction Modeling Second Edition, 2007Cambridge University Press, Cambridge, UK. 564pp., Price £45, ISBN 978 0 521 87554 7 , 2008 .

[35]  P. Jaffé,et al.  Potential Effect of CO2 Releases from Deep Reservoirs on the Quality of Fresh-Water Aquifers , 2003 .

[36]  Sam Holloway,et al.  An overview of the underground disposal of carbon dioxide , 1997 .

[37]  Chin-Fu Tsang,et al.  Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater , 2008 .

[38]  Sally M. Benson,et al.  Capacity investigation of brine-bearing sands of the Fwwm formation for geologic sequestration of CO{sub 2} , 2001 .

[39]  Laurent Trenty,et al.  A benchmark study on problems related to CO2 storage in geologic formations , 2009 .

[40]  Robert C. Burruss,et al.  Geochemical Investigation of the Potential for Mobilizing Non-Methane Hydrocarbons during Carbon Dioxide Storage in Deep Coal Beds , 2006 .

[41]  D. Langmuir Aqueous Environmental Geochemistry , 1997 .

[42]  Roger D. Aines,et al.  Transport and detection of carbon dioxide in dilute aquifers , 2009 .

[43]  C. Tsang,et al.  Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis , 2006 .

[44]  Stefan Bachu,et al.  Aquifer disposal of CO2: Hydrodynamic and mineral trapping , 1994 .

[45]  M. Person,et al.  Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles , 2008 .

[46]  Jens T. Birkholzer,et al.  Geochemical modeling of changes in shallow groundwater chemistry observed during the MSU-ZERT CO2 injection experiment , 2012 .

[47]  Jennifer L. Lewicki,et al.  Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned , 2007 .

[48]  L. V. D. Meer Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands , 1992 .

[49]  Brian McPherson,et al.  Multiphase CO2 flow, transport and sequestration in the Powder River Basin, Wyoming, USA , 2000 .

[50]  K. Pruess,et al.  Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea , 2007, American Journal of Science.

[51]  E. Sudicky,et al.  Simulating the impact of glaciations on continental groundwater flow systems: 1. Relevant processes and model formulation , 2008 .

[52]  Michael A. Celia,et al.  Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin , 2004 .

[53]  Jonny Rutqvist,et al.  Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2 , 2004 .

[54]  J. Nicot,et al.  Investigation of water displacement following large CO2 sequestration operations , 2009 .

[55]  C. Tsang,et al.  Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems , 2009 .

[56]  E. Sudicky,et al.  Effects of shield brine on the safe disposal of waste in deep geologic environments , 2009 .

[57]  Liange Zheng,et al.  Evaluation of Potential Changes in Groundwater Quality in Response to CO2 Leakage from Deep Geologic Storage , 2010 .

[58]  Toby Aiken,et al.  Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations , 2010 .

[59]  Keni Zhang,et al.  Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems , 2008 .

[60]  E. Sudicky,et al.  Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation , 2008 .

[61]  N. W. Lanfredi,et al.  HP 67/97 calculator waves application programs , 1987 .

[62]  Stefan Bachu,et al.  CO2 storage in geological media: Role, means, status and barriers to deployment , 2008 .

[63]  John A. Cherry,et al.  Migration of contaminants in groundwater at a landfill: A case study: 2. Groundwater monitoring devices , 1983 .

[64]  M. Celia,et al.  Analytical solutions for leakage rates through abandoned wells , 2004 .

[65]  David R. Cole,et al.  Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins , 2006 .

[66]  Gunnar Gustafson,et al.  The Äspö Task Force on groundwater flow and transport of solutes: bridging the gap between site characterization and performance assessment for radioactive waste disposal in fractured rocks , 2009 .

[67]  Carl W. Gable,et al.  Assessment of basin-scale hydrologic impacts of CO2 sequestration, Illinois basin , 2010 .

[68]  S. Bachu,et al.  Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution , 2003 .

[69]  R. Betcher,et al.  Reversal of the regional-scale flow system of the Williston basin in response to Pleistocene glaciation , 2000 .

[70]  Lincoln Paterson,et al.  Role of Convective Mixing in the Long-Term Storage of Carbon Dioxide in Deep Saline Formations , 2003 .

[71]  J. Birkholzer,et al.  Basin-scale hydrogeologic impacts of CO2 storage: Capacity and regulatory implications , 2009 .

[72]  Jens Birkholzer,et al.  Identification of thermodynamic controls defining the concentrations of hazardous elements in potable ground waters and the potential impact of increasing carbon dioxide partial pressure , 2009 .

[73]  K. Pruess ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2 , 2005 .

[74]  Karsten Pruess,et al.  TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variable Saturated Geologic Media , 2004 .

[75]  John A. Cherry,et al.  Migration of contaminants in groundwater at a landfill: A case study: 1. Groundwater flow and plume delineation , 1983 .

[76]  C. Tsang,et al.  A study of caprock hydromechanical changes associated with CO2-injection into a brine formation , 2002 .

[77]  B. Metz IPCC special report on carbon dioxide capture and storage , 2005 .

[78]  E. Sudicky A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process , 1986 .

[79]  John D Bredehoeft From models to performance assessment: the conceptualization problem. , 2003, Ground water.