Geopolymer technology: the current state of the art

[1]  J. Deventer,et al.  Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. , 2007, Journal of hazardous materials.

[2]  J. Deventer,et al.  The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers , 2007 .

[3]  Á. G. Torre,et al.  Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction , 2006 .

[4]  Á. Palomo,et al.  The role played by the reactive alumina content in the alkaline activation of fly ashes , 2006 .

[5]  Hua Xu,et al.  Effect of Curing Temperature and Silicate Concentration on Fly-Ash-Based Geopolymerization , 2006 .

[6]  C. De Rosa,et al.  Crystals and crystallinity in polymeric materials. , 2006, Accounts of chemical research.

[7]  Ángel Palomo,et al.  Engineering Properties of Alkali-Activated Fly Ash Concrete , 2006 .

[8]  Á. G. Torre,et al.  Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity , 2006 .

[9]  Waltraud M. Kriven,et al.  Novel, alkali-bonded, ceramic filtration membranes , 2008 .

[10]  Yun Bao,et al.  Preparation and Properties of Hydroceramic Waste Forms Made with Simulated Hanford Low-Activity Waste , 2005 .

[11]  Ángel Palomo,et al.  Mid-infrared spectroscopic studies of alkali-activated fly ash structure , 2005 .

[12]  J. Deventer,et al.  Understanding the relationship between geopolymer composition, microstructure and mechanical properties , 2005 .

[13]  J. Deventer,et al.  Modeling Speciation in Highly Concentrated Alkaline Silicate Solutions , 2005 .

[14]  Ángel Palomo,et al.  Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator , 2005 .

[15]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[16]  J.S.J. van Deventer,et al.  The Role of Mathematical Modelling and Gel Chemistry in Advancing Geopolymer Technology , 2005 .

[17]  Á. Palomo,et al.  Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model , 2005 .

[18]  Ángel Palomo,et al.  Corrosion resistance in activated fly ash mortars , 2005 .

[19]  T. Bakharev,et al.  Durability of Geopolymer Materials in Sodium and Magnesium Sulfate Solutions , 2005 .

[20]  J. Deventer,et al.  Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results , 2005 .

[21]  J. Deventer,et al.  Statistical Thermodynamic Model for Si/Al Ordering in Amorphous Aluminosilicates , 2005 .

[22]  Ángel Palomo,et al.  Fixing Arsenic in Alkali‐Activated Cementitious Matrices , 2005 .

[23]  K. Sagoe-Crentsil,et al.  Effects of aluminates on the formation of geopolymers , 2005 .

[24]  J. Provis,et al.  29Si NMR study of structural ordering in aluminosilicate geopolymer gels. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[25]  P. Duxson,et al.  Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels , 2005 .

[26]  M. Blanco-Varela,et al.  Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction , 2004 .

[27]  A. Fernández-Jiménez,et al.  "Geopolimeros": una nica base qumica y diferentes microestructuras , 2004 .

[28]  E. Gartner Industrially interesting approaches to “low-CO2” cements ☆ , 2004 .

[29]  Á. Palomo,et al.  Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products , 2004 .

[30]  J. Deventer,et al.  Ab initio study of dissolution reactions of five-membered aluminosilicate framework rings , 2004 .

[31]  Á. Palomo,et al.  Characterisation of fly ashes. Potential reactivity as alkaline cements , 2003 .

[32]  J. Phair,et al.  Characteristics of aluminosilicate hydrogels related to commercial “Geopolymers” , 2003 .

[33]  J. V. Deventer,et al.  Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates , 2003 .

[34]  C. Yip,et al.  Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder , 2003 .

[35]  H. Rahier,et al.  Low-temperature synthesized aluminosilicate glasses Part IV Modulated DSC study on the effect of particle size of metakaolinite on the production of inorganic polymer glasses , 2003 .

[36]  Gautam R. Desiraju Crystal: In search of clarity , 2003, Nature.

[37]  Brian H. O'Connor,et al.  Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite , 2003 .

[38]  Hua Xu,et al.  The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars , 2003 .

[39]  Ángel Palomo,et al.  Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes Part I. Stabilisation of boron , 2003 .

[40]  Hua Xu,et al.  Geopolymerisation of multiple minerals , 2002 .

[41]  J. Deventer,et al.  Structural reorganisation of class F fly ash in alkaline silicate solutions , 2002 .

[42]  A. Samadi-Maybodi,et al.  Aluminium‐27 NMR investigation of the influence of cation type on aluminosilicate solutions , 2002 .

[43]  M. Henry Nonempirical quantification of molecular interactions in supramolecular assemblies. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  Paul Mccormick,et al.  Investigation of a synthetic aluminosilicate inorganic polymer , 2002 .

[45]  J. Deventer,et al.  The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements , 2002 .

[46]  Eric H. Oelkers,et al.  General kinetic description of multioxide silicate mineral and glass dissolution , 2001 .

[47]  S. Gíslason,et al.  The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11 , 2001 .

[48]  T. Swaddle Silicate complexes of aluminum(III) in aqueous systems , 2001 .

[49]  K. Ikeda,et al.  Crystallization behavior and characteristics of mullites formed from alumina–silica gels prepared by the geopolymer technique in acidic conditions , 2001 .

[50]  S. Alonso,et al.  Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio , 2001 .

[51]  S. Alonso,et al.  Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures , 2001 .

[52]  M. Blanco-Varela,et al.  Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry , 2000 .

[53]  H. Rahier,et al.  Influence of the Degree of Dehydroxylation of Kaolinite on the Properties of Aluminosilicate Glasses , 2000 .

[54]  K. MacKenzie,et al.  Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers , 2000 .

[55]  B. Phillips,et al.  In Situ Calorimetric, Structural, and Compositional Study of Zeolite Synthesis in the System 5.15Na2O−1.00Al2O3−3.28SiO2−165H2O , 2000 .

[56]  J. Deventer,et al.  The geopolymerisation of alumino-silicate minerals , 2000 .

[57]  J.S.J. van Deventer,et al.  Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers , 1999 .

[58]  J.S.J. van Deventer,et al.  The effect of metal contaminants on the formation and properties of waste-based geopolymers , 1999 .

[59]  J. Stebbins,et al.  The degree of aluminum avoidance in aluminosilicate glasses , 1999 .

[60]  Peter Graham,et al.  Solubility of Zeolite A and Its Amorphous Precursor under Synthesis Conditions , 1999 .

[61]  D. Roy Alkali-activated cements Opportunities and challenges , 1999 .

[62]  H. Rahier,et al.  Characterization of Reacting Polymer Systems by Temperature-Modulated Differential Scanning Calorimetry , 1998 .

[63]  J. Smith Atmospheric weathering and silica-coated feldspar: analogy with zeolite molecular sieves, granite weathering, soil formation, ornamental slabs, and ceramics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[64]  T. Advocat,et al.  Kinetic aspects of basaltic glass dissolution at 90°C: role of aqueous silicon and aluminium , 1997 .

[65]  H. Rahier,et al.  Low-temperature synthesized aluminosilicate glasses: Part III Influence of the composition of the silicate solution on production, structure and properties , 1997 .

[66]  J. Walther RELATION BETWEEN RATES OF ALUMINOSILICATE MINERAL DISSOLUTION, PH, TEMPERATURE, AND SURFACE CHARGE , 1996 .

[67]  J. Faimon Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering , 1996 .

[68]  J. Wastiels,et al.  Low-temperature synthesized aluminosilicate glasses , 1996 .

[69]  D. Ganguli,et al.  Role of dopant cations in the gelation behaviour of silica sols , 1994 .

[70]  J. Nagy,et al.  Influence of cations on the physicochemical and structural properties of aluminosilicate gel precursors: II. Multinuclear magnetic resonance characterization , 1994 .

[71]  E. Oelkers,et al.  The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions , 1994 .

[72]  P. Tregloan,et al.  Aqueous aluminates, silicates, and aluminosilicates , 1994 .

[73]  T. Antonić,et al.  Dissolution of amorphous aluminosilicate zeolite precursors in alkaline solutions. Part 3.—Influence of temperature on the dissolution process , 1994 .

[74]  Hubert A. Gasteiger,et al.  Solubility of aluminosilicates in alkaline solutions and a thermodynamic equilibrium model , 1992 .

[75]  F. Crea,et al.  Influence of cations on the physicochemical and structural properties of aluminosilicate gel precursors. Part 1. Chemical and thermal properties , 1991 .

[76]  J. Davidovits Geopolymers : inorganic polymeric new materials , 1991 .

[77]  J. Serratosa,et al.  Silicon-29 and aluminum-27 NMR study of zeolite formation from alkali-leached kaolinites: influence of thermal preactivation , 1990 .

[78]  Alexis T. Bell,et al.  Multinuclear NMR investigation of the formation of aluminosilicate anions , 1989 .

[79]  G. Wasserburg,et al.  'Domestic' origin of opaque assemblages in refractory inclusions in meteorites , 1988, Nature.

[80]  A. Lasaga Role of surface speciation in the low-temperature dissolution of minerals , 1988, Nature.

[81]  D. Michel,et al.  High-resolution solid-state NMR of silicates and zeolites , 1987 .

[82]  L. Öhman,et al.  Polysilicate equilibria in concentrated sodium silicate solutions , 1987 .

[83]  L. Glasser,et al.  The gelation behaviour of aluminosilicate solutions containing Na+, K+, Cs+, and Me4N+ , 1984 .

[84]  J. Klinowski Nuclear magnetic resonance studies of zeolites , 1984 .

[85]  R. M. Barrer,et al.  Hydrothermal Chemistry of Zeolites , 1982 .

[86]  D. Mainwaring,et al.  Chemistry of soil minerals. Part XI. Hydrothermal transformations of metakaolinite in potassium hydroxide , 1972 .

[87]  D. Mainwaring,et al.  Chemistry of soil minerals. Part XIII. Reactions of metakaolinite with single and mixed bases , 1972 .

[88]  R. M. Barrer,et al.  562. The hydrothermal chemistry of the silicates. Part VII. Synthetic potassium aluminosilicates , 1956 .

[89]  R. M. Barrer,et al.  821. Hydrothermal chemistry of silicates. Part IV. Rubidium and cœsium aluminosilicates , 1953 .

[90]  R. M. Barrer,et al.  286. The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates , 1952 .

[91]  R. M. Barrer,et al.  283. The hydrothermal chemistry of silicates. Part I. Synthetic lithium aluminosilicates , 1951 .

[92]  R. H. Atkinson Recent advances in the applied chemistry of the rare metals. Jubilee memorial lecture , 1940 .

[93]  H. Taylor Chemistry of Cements , 1938, Nature.