Pressure-dependent electronic structure calculations using integral equation-based solvation models.

[1]  D. Marx,et al.  Structure and thermodynamics of aqueous urea solutions from ambient to kilobar pressures: From thermodynamic modeling, experiments, and first principles simulations to an accurate force field description. , 2019, Biophysical chemistry.

[2]  pKa calculations for tautomerizable and conformationally flexible molecules: partition function vs. state transition approach , 2019, Journal of Molecular Modeling.

[3]  A. L. East,et al.  Challenges in predicting Δrxn G in solution: Hydronium, hydroxide, and water autoionization , 2018, International Journal of Quantum Chemistry.

[4]  Stefan M. Kast,et al.  The SAMPL6 challenge on predicting aqueous pKa values from EC-RISM theory , 2018, Journal of Computer-Aided Molecular Design.

[5]  D. Marx,et al.  Liquid-Vapor Phase Diagram of RPBE-D3 Water: Electronic Properties along the Coexistence Curve and in the Supercritical Phase. , 2017, The journal of physical chemistry. B.

[6]  B. Kirchner,et al.  Predicting the Ionic Product of Water , 2017, Scientific Reports.

[7]  R. Hoffmann,et al.  The Effect of Pressure on Organic Reactions in Fluids-a New Theoretical Perspective. , 2017, Angewandte Chemie.

[8]  Stefan M. Kast,et al.  The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous pKa, and cyclohexane–water log D , 2016, Journal of Computer-Aided Molecular Design.

[9]  D. Marx,et al.  Toward Extreme Biophysics: Deciphering the Infrared Response of Biomolecular Solutions at High Pressures. , 2016, Angewandte Chemie.

[10]  H. Kalbitzer,et al.  The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins. , 2016, Angewandte Chemie.

[11]  T. Morawietz,et al.  How van der Waals interactions determine the unique properties of water , 2016, Proceedings of the National Academy of Sciences.

[12]  D. Marx,et al.  Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures. , 2016, The Journal of chemical physics.

[13]  Sh. I. Mamatkulov,et al.  Optimization of classical nonpolarizable force fields for OH(-) and H3O(+). , 2016, The Journal of chemical physics.

[14]  Roberto Cammi,et al.  A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure , 2015, J. Comput. Chem..

[15]  D. Marx,et al.  Water structure and solvation of osmolytes at high hydrostatic pressure: pure water and TMAO solutions at 10 kbar versus 1 bar. , 2015, Physical chemistry chemical physics : PCCP.

[16]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[17]  Jochen Heil,et al.  3D RISM theory with fast reciprocal-space electrostatics. , 2015, The Journal of chemical physics.

[18]  Stefan M. Kast,et al.  Solvation effects on chemical shifts by embedded cluster integral equation theory. , 2014, The journal of physical chemistry. A.

[19]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[20]  Hirofumi Sato A modern solvation theory: quantum chemistry and statistical chemistry. , 2013, Physical chemistry chemical physics : PCCP.

[21]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[22]  J. Tomasi,et al.  Calculation and analysis of the harmonic vibrational frequencies in molecules at extreme pressure: methodology and diborane as a test case. , 2012, The Journal of chemical physics.

[23]  Y. Marcus Volumes of aqueous hydrogen and hydroxide ions at 0 to 200 °C. , 2012, The Journal of chemical physics.

[24]  Miguel A. L. Marques,et al.  Libxc: A library of exchange and correlation functionals for density functional theory , 2012, Comput. Phys. Commun..

[25]  M. Meuwly,et al.  On the role of nonbonded interactions in vibrational energy relaxation of cyanide in water. , 2011, The journal of physical chemistry. A.

[26]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[27]  Amalendu Chandra,et al.  Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton. , 2010, Chemical reviews.

[28]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[29]  S. Kast,et al.  Closed-form expressions of the chemical potential for integral equation closures with certain bridge functions. , 2008, The Journal of chemical physics.

[30]  Jochen Heil,et al.  Quantum chemistry in solution by combining 3D integral equation theory with a cluster embedding approach. , 2008, The journal of physical chemistry. B.

[31]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[32]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[33]  Dominik Marx,et al.  Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  Zoi A. Makrodimitri,et al.  Molecular dynamics simulation of structure, thermodynamic, and dynamic properties of poly(dimethylsilamethylene), poly(dimethylsilatrimethylene) and their alternating copolymer. , 2006, The journal of physical chemistry. B.

[35]  Andrei V. Bandura,et al.  The Ionization Constant of Water over Wide Ranges of Temperature and Density , 2006 .

[36]  M. Tuckerman,et al.  Structure and dynamics of OH-(aq). , 2006, Accounts of chemical research.

[37]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[38]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[39]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[40]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[41]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[42]  Wely B. Floriano,et al.  Dielectric Constant and Density of Water as a Function of Pressure at Constant Temperature , 2004 .

[43]  J. Brickmann,et al.  Binary phases of aliphatic N-oxides and water: Force field development and molecular dynamics simulation , 2003 .

[44]  M. Parrinello,et al.  The nature and transport mechanism of hydrated hydroxide ions in aqueous solution , 2002, Nature.

[45]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[46]  S. Kast,et al.  Hybrid integral equation/Monte Carlo approach to complexation thermodynamics , 2002 .

[47]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[48]  Yuichi Harano,et al.  Theoretical study for partial molar volume of amino acids and polypeptides by the three-dimensional reference interaction site model , 2001 .

[49]  Masahiro Kinoshita,et al.  Theoretical study for partial molar volume of amino acids in aqueous solution: Implication of ideal fluctuation volume , 2000 .

[50]  F. Hirata,et al.  Ab Initio Study on Molecular and Thermodynamic Properties of Water: A Theoretical Prediction of pKw over a Wide Range of Temperature and Density , 1999 .

[51]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[52]  M. Parrinello,et al.  The nature of the hydrated excess proton in water , 1999, Nature.

[53]  F. Hirata,et al.  Three-dimensional density profiles of water in contact with a solute of arbitrary shape: a RISM approach , 1998 .

[54]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[55]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[56]  Michele Parrinello,et al.  A hybrid Gaussian and plane wave density functional scheme , 1997 .

[57]  Benoît Roux,et al.  An Integral Equation To Describe the Solvation of Polar Molecules in Liquid Water , 1997 .

[58]  F. Hirata,et al.  Ion Hydration: Thermodynamic and Structural Analysis with an Integral Equation Theory of Liquids , 1997 .

[59]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[60]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[61]  Eric Oldfield,et al.  1H, 13C and 15N chemical shift referencing in biomolecular NMR , 1995, Journal of biomolecular NMR.

[62]  Kari Laasonen,et al.  Ab Initio Molecular Dynamics , 1994, Methods in molecular biology.

[63]  B. Montgomery Pettitt,et al.  A site-site theory for finite concentration saline solutions , 1992 .

[64]  B. Montgomery Pettitt,et al.  A dielectrically consistent interaction site theory for solvent—electrolyte mixtures , 1992 .

[65]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[66]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[67]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[68]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[69]  D. Moffatt,et al.  The Uncoupled O-H or O-D Stretch in Water as an Internal Pressure Gauge for High-Pressure Infrared Spectroscopy of Aqueous Systems , 1987 .

[70]  E. Becker,et al.  Calibration of methanol and ethylene glycol nuclear magnetic resonance thermometers , 1979 .

[71]  H. Yamada Pressure‐resisting glass cell for high pressure, high resolution NMR measurement , 1974 .

[72]  David Chandler,et al.  Optimized Cluster Expansions for Classical Fluids. I. General Theory and Variational Formulation of the Mean Spherical Model and Hard Sphere Percus‐Yevick Equations , 1972 .

[73]  H. C. Andersen,et al.  Optimized Cluster Expansions for Classical Fluids. III. Applications to Ionic Solutions and Simple Liquids , 1972 .

[74]  W. Litchman,et al.  Nitrogen-15 nuclear magnetic resonance shifts in liquid ammonia-15N-solvent mixtures , 1969 .