Spectral Analysis of Heart Rate During Different States of Activity

The momentary mean heart rate results from an interaction of several different mechanisms. The reticular activating system which generates the basic drive for somatomotor, respiratory, and cardiovascular control systems (Magoun 1950; Moruzzi 1972) exerts excitatory influences on cardiomotor neurons and, therefore, “unspecifically” drives the chronotropic cardiac innervation. Conversely, limbic structures specifically control heart rate when organizing the autonomic components of ongoing behavior (Hess 1949). With increasing activity, afferent information processing from various receptor sites contribute to the adequate adjustment of the heart rate to changing metabolic demands. Especially during low physical activation, heart rate, as an effector of the blood pressure control system, is affected by baroreceptor activity via a negative feedback loop (Bristow et al. 1971).

[1]  R. Cohen,et al.  Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. , 1981, Science.

[2]  S Cerutti,et al.  Spectral analysis of R-R and arterial pressure variabilities to assess sympatho-vagal interaction during mental stress in humans. , 1989, Journal of hypertension. Supplement : official journal of the International Society of Hypertension.

[3]  R. Cohen,et al.  Hemodynamic regulation: investigation by spectral analysis. , 1985, The American journal of physiology.

[4]  L. Mulder,et al.  Information processing and cardiovascular control. , 1981, Psychophysiology.

[5]  M. Turiel,et al.  Power Spectral Analysis of Heart Rate and Arterial Pressure Variabilities as a Marker of Sympatho‐Vagal Interaction in Man and Conscious Dog , 1986, Circulation research.

[6]  H. Koepchen,et al.  Cardiorespiratory Relations in Human Heart Rate Pattern , 1991 .

[7]  E. Larsen,et al.  A mathematical model of amphibian skin epithelium with two types of transporting cellular units , 2004, Pflügers Archiv.

[8]  E. Burgess Cardiac vagal denervation in hemodialysis patients. , 1982, Nephron.

[9]  B. Sayers,et al.  Analysis of heart rate variability. , 1973, Ergonomics.

[10]  D. Jordan,et al.  Synaptic mechanisms involved in the inspiratory modulation of vagal cardio‐inhibitory neurones in the cat. , 1984, The Journal of physiology.

[11]  D. J. Cunningham,et al.  Effect of Bicycling on the Baroreflex Regulation of Pulse Interval , 1971 .

[12]  N. A. Coulter,et al.  Respiratory sinus arrhythmia: a frequency dependent phenomenon , 1964 .

[13]  J. Hirsch,et al.  Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. , 1981, The American journal of physiology.

[14]  H. Koepchen,et al.  [On the relationships between central excitation, reflex tone and respiratory rhythm in nervous regulation of heart frequency]. , 1961, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[15]  J. Iriuchijima,et al.  ACTIVITY OF SINGLE VAGAL FIBERS EFFERENT TO THE HEART. , 1964, The Japanese journal of physiology.

[16]  D. Adam,et al.  Assessment of autonomic function in humans by heart rate spectral analysis. , 1985, The American journal of physiology.

[17]  F Heydenreich,et al.  Contributions of sympathetic and vagal mechanisms to the genesis of heart rate fluctuations during orthostatic load: a spectral analysis. , 1987, Journal of the autonomic nervous system.

[18]  D. Eckberg,et al.  Respiratory and baroreceptor reflex interactions in man. , 1977, The Journal of clinical investigation.

[19]  B. W. Hyndman,et al.  Spontaneous Rhythms in Physiological Control Systems , 1971, Nature.

[20]  H. Koepchen,et al.  New Approach to Analysing the Neurovegetative State in Man , 1989 .

[21]  R. Tarazi,et al.  Assessment of parasympathetic control of heart rate by a noninvasive method. , 1984, The American journal of physiology.

[22]  H. J. Gundersen,et al.  A long-term diabetic autonomic nervous abnormality , 1977, Diabetologia.

[23]  H. Magoun Caudal and cephalic influences of the brain stem reticular formation. , 1950, Physiological reviews.

[24]  D. Jewett,et al.  Activity of single efferent fibres in the cervical vagus nerve of the dog, with special reference to possible cardio‐inhibitory fibres , 1964, The Journal of physiology.

[25]  G. Anrep,et al.  Respiratory Variations of the Heart Rate. I.--The Reflex Mechanism of the Respiratory Arrhythmia , 1936 .

[26]  J. Saul,et al.  Modulation of cardiac autonomic activity during and immediately after exercise. , 1989, The American journal of physiology.

[27]  宮川 清,et al.  Mechanisms of Blood Pressure Waves , 1984 .

[28]  D. J. Cunningham,et al.  Effects of Autonomic Blockade on the Baroreflex in Man at Rest and During Exercise , 1972, Circulation research.

[29]  H. D. Lux,et al.  Überdie Zusammenhänge zwischen zentraler Erregbarkeit, reflektorischem Tonus und Atemrhythmus bei der nervösen Steuerung der Herzfrequenz , 1961, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[30]  P G Katona,et al.  Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. , 1975, Journal of applied physiology.

[31]  G. Moruzzi,et al.  The sleep-waking cycle. , 1972, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[32]  K. Thurau,et al.  Über die Entstehungsbedingungen der atemysnchronen Schwankungen des Vagustonus (Respiratorische Arrhythmie) , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[33]  A C GUYTON,et al.  Pressoreceptor-autonomic oscillation; a probable cause of vasomotor waves. , 1951, The American journal of physiology.

[34]  A. Melcher Respiratory sinus arrhythmia in man. A study in heart rate regulating mechanisms. , 1976, Acta physiologica Scandinavica. Supplementum.

[35]  M. N. Levy,et al.  Autonomic control of cardiac pacemaker activity and atrioventricular transmission. , 1969, Journal of applied physiology.

[36]  P G Katona,et al.  Cardiac vagal efferent activity and heart period in the carotid sinus reflex. , 1970, The American journal of physiology.