Sparse hypergraphs: New bounds and constructions

More than forty years ago, Brown, Erdős and Sos introduced the function $f_r(n,v,e)$ to denote the maximum number of edges in an $r$-uniform hypergraph on $n$ vertices which does not contain $e$ edges spanned by $v$ vertices. In other words, in such a hypergraph the union of arbitrary $e$ edges contains at least $v+1$ vertices. In the literature, the following conjecture is well-known. Conjecture: $n^{k-o(1)} k\ge 2$, $e\ge 3$. Note that for $r=3, e=3, k=2$, this conjecture was solved by the famous Ruzsa-Szemer{e}di's (6,3)-theorem. In this paper, we add more evidence for the validity of this conjecture. On one hand, we use the hypergraph removal lemma to prove that the right hand side of the conjecture is true for all fixed integers $r\ge k+1\ge e\ge3$. Our result implies all known upper bounds which match the conjectured magnitude. On the other hand, we present several constructive results showing that the left hand side of the conjecture is true for $r\ge3$, $k=2$ and $e=4,5,7,8$. All previous constructive results meeting the conjectured lower bound satisfy either $r=3$ or $e=3$. Our constructions are the first ones which break this barrier.

[1]  Dániel Gerbner,et al.  Turán-type problems , 2018, Extremal Finite Set Theory.

[2]  Itzhak Tamo,et al.  Sparse Hypergraphs with Applications to Coding Theory , 2019, SIAM J. Discret. Math..

[3]  Jordan S. Ellenberg,et al.  On large subsets of $F_q^n$ with no three-term arithmetic progression , 2016 .

[4]  Z. Furedi,et al.  Uniform hypergraphs containing no grids , 2011, 1103.1691.

[5]  Itzhak Tamo,et al.  Degenerate Turán densities of sparse hypergraphs , 2019, J. Comb. Theory, Ser. A.

[6]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[7]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[8]  Vojtech Rödl,et al.  Extremal problems on set systems , 2002, Random Struct. Algorithms.

[9]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Douglas R. Stinson,et al.  Combinatorial batch codes , 2009, Adv. Math. Commun..

[11]  József Solymosi,et al.  Small cores in 3-uniform hypergraphs , 2015, J. Comb. Theory B.

[12]  R. Graham,et al.  Hypergraphs , 2020, Erdős on Graphs.

[13]  P. Erdijs ON SOME EXTREMAL PROBLEMS ON r-GRAPHS , 1971 .

[14]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[15]  Stefan Glock Triple systems with no three triples spanning at most five points , 2018, Bulletin of the London Mathematical Society.

[16]  Alexander Sidorenko,et al.  What we know and what we do not know about Turán numbers , 1995, Graphs Comb..

[17]  Gábor N. Sárközy,et al.  An Extension Of The Ruzsa-Szemerédi Theorem , 2004, Comb..

[18]  P. Os,et al.  Problems and Results in Combinatorial Analysis , 1978 .

[19]  Vojtech Rödl,et al.  Regularity properties for triple systems , 2003, Random Struct. Algorithms.

[20]  Vojtech Rödl,et al.  Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005, Random Struct. Algorithms.

[21]  Imre Z. Ruzsa,et al.  Solving a linear equation in a set of integers I , 1993 .

[22]  P. Erdos Problems and Results in Combinatorial Analysis , 2022 .

[23]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[24]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[25]  Christopher M. Hartman Extremal problems in graph theory , 1997 .

[26]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[27]  Benny Sudakov,et al.  Recent Developments in Extremal Combinatorics: Ramsey and Turan Type Problems , 2011 .

[28]  Y. Lin,et al.  On subsets of F1n containing no k-term progressions , 2010, Eur. J. Comb..

[29]  Gennian Ge,et al.  Separating Hash Families: A Johnson-type bound and New Constructions , 2016, SIAM J. Discret. Math..

[30]  Noga Alon,et al.  Parent-Identifying Codes , 2001, J. Comb. Theory, Ser. A.

[31]  Gábor N. Sárközy,et al.  On a Turán-type hypergraph problem of Brown, Erdos and T. Sós , 2005, Discret. Math..

[32]  W. G. Brown,et al.  On the existence of triangulated spheres in 3-graphs, and related problems , 1973 .

[33]  Paul Erdös,et al.  On some extremal problems on r-graphs , 1971, Discret. Math..

[34]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[35]  Noga Alon,et al.  On An Extremal Hypergraph Problem Of Brown, Erdős And Sós , 2006, Comb..

[36]  David Conlon,et al.  Graph removal lemmas , 2012, Surveys in Combinatorics.

[37]  V. Rödl,et al.  Extremal Hypergraph Problems and the Regularity Method , 2006 .

[38]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..