Searches for stochastic gravitational-wave backgrounds

These lecture notes provide a brief introduction to methods used to search for a stochastic background of gravitational radiation---a superposition of gravitational-wave signals that are either too weak or too numerous to individually detect. The focus of these notes is on relevant data analysis techniques, not on the particular astrophysical or cosmological sources that are responsible for producing the background. The lecture notes are divided into two main parts: (i) an overview, consisting of a description of different types of gravitational-wave backgrounds and an introduction to the method of cross-correlating data from multiple detectors, which can be used to extract the signal from the noise; (ii) details, extending the previous discussion to non-trivial detector response, non-trivial overlap functions, and a recently proposed Bayesian method to search for the gravitational-wave background produced by stellar-mass binary black hole mergers throughout the universe. Suggested exercises for the reader are given throughout the text, and compiled in an appendix.

[1]  N. V. Keerthana,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018, 1811.12907.

[2]  A. Jenkins,et al.  Anisotropies in the stochastic gravitational-wave background: Formalism and the cosmic string case , 2018, Physical Review D.

[3]  Rory Smith,et al.  Optimal Search for an Astrophysical Gravitational-Wave Background , 2017, 1712.00688.

[4]  B. A. Boom,et al.  GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences , 2017, 1710.05837.

[5]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[6]  J. Uzan,et al.  Anisotropy of the astrophysical gravitational wave background: Analytic expression of the angular power spectrum and correlation with cosmological observations , 2017, 1704.06184.

[7]  Joseph D. Romano,et al.  Detection methods for stochastic gravitational-wave backgrounds: a unified treatment , 2016, Living reviews in relativity.

[8]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[9]  Irene Fiori,et al.  Subtraction of correlated noise in global networks of gravitational-wave interferometers , 2016, 1606.01011.

[10]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[11]  B. A. Boom,et al.  GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. , 2016, Physical review letters.

[12]  T. J. W. Lazio,et al.  ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS , 2015, 1511.05564.

[13]  A. Parida,et al.  Component separation of a isotropic Gravitational Wave Background , 2015, 1510.07994.

[14]  J. Gair,et al.  Mapping gravitational-wave backgrounds of arbitrary polarisation using pulsar timing arrays , 2015, 1506.08668.

[15]  J. Gair,et al.  Expected properties of the first gravitational wave signal detected with pulsar timing arrays , 2015, 1503.04803.

[16]  J. Romano,et al.  Understanding the gravitational-wave Hellings and Downs curve for pulsar timing arrays in terms of sound and electromagnetic waves , 2014, 1412.1142.

[17]  J. Gair,et al.  Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays , 2014, 1406.4664.

[18]  R. Schofield,et al.  Correlated noise in networks of gravitational-wave detectors: subtraction and mitigation , 2014, 1406.2367.

[19]  N. Cornish,et al.  Detecting a Stochastic Gravitational Wave Background in the presence of a Galactic Foreground and Instrument Noise , 2013, 1307.4116.

[20]  I. Mandel,et al.  Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays , 2013, 1306.5394.

[21]  X. Siemens,et al.  The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.

[22]  Nelson Christensen,et al.  Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications , 2013, 1303.2613.

[23]  X. Siemens,et al.  Stochastic backgrounds in alternative theories of gravity: overlap reduction functions for pulsar timing arrays , 2011, 1111.5661.

[24]  N. Cornish,et al.  Discriminating between a stochastic gravitational wave background and instrument noise , 2010, 1002.1291.

[25]  V. Mandic,et al.  Probing the anisotropies of a stochastic gravitational-wave background using a network of ground-based laser interferometers , 2009, 0910.0858.

[26]  R. Price,et al.  Detecting Gravitational Waves of Alternative Theories Using Pulsar Timing , 2007 .

[27]  S. Ravi Bayesian Logical Data Analysis for the Physical Sciences: a Comparative Approach with Mathematica® Support , 2007 .

[28]  J. Fabris,et al.  Gravity: An Introduction to Einstein's General Relativity , 2004 .

[29]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[30]  A. Melchiorri,et al.  The BOOMERanG experiment and the curvature of the universe , 2002, astro-ph/0201137.

[31]  E. Phinney A Practical Theorem on Gravitational Wave Backgrounds , 2001, astro-ph/0108028.

[32]  J. Armstrong,et al.  Time-delay analysis of LISA gravitational data: elimination spacecraft motion effects , 2000 .

[33]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[34]  B. Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1997, gr-qc/9710117.

[35]  Peter L. Bender,et al.  Confusion noise level due to galactic and extragalactic binaries , 1997 .

[36]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[37]  B. Allen,et al.  Detection of anisotropies in the gravitational-wave stochastic background , 1996, gr-qc/9607068.

[38]  B. Allen The Stochastic Gravity-Wave Background: Sources and Detection , 1996, gr-qc/9604033.

[39]  E. Flanagan Sensitivity of the Laser Interferometer Gravitational Wave Observatory to a stochastic background, and its dependence on the detector orientations. , 1993, Physical review. D, Particles and fields.

[40]  Christensen,et al.  Measuring the stochastic gravitational-radiation background with laser-interferometric antennas. , 1992, Physical review. D, Particles and fields.

[41]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[42]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[43]  Michael S. Turner,et al.  The early Universe , 1981, Nature.

[44]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[45]  L. Grishchuk Primordial gravitons and possibility of their observation , 1976 .

[46]  A. Penzias,et al.  A Measurement of excess antenna temperature at 4080-Mc/s , 1965 .

[47]  P. J. E. Peebles,et al.  Cosmic Black-Body Radiation , 1965 .

[48]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[49]  M. Sazhin Opportunities for detecting ultralong gravitational waves , 1978 .

[50]  G. Lazarides Corfu Summer Institute on Elementary Particle Physics, 1998 PROCEEDINGS Introduction to Cosmology , 2022 .

[51]  D. Spergel,et al.  The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations , 2011, 1105.2044.