Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations

Abstract. We combine in situ measurements of sea salt aerosols (SS) from open ocean cruises and ground-based stations together with aerosol optical depth (AOD) observations from MODIS and AERONET, and the GEOS-Chem global chemical transport model to provide new constraints on SS emissions over the world's oceans. We find that the GEOS-Chem model using the Gong (2003) source function overestimates cruise observations of coarse mode SS mass concentrations by factors of 2–3 at high wind speeds over the cold waters of the Southern, North Pacific and North Atlantic Oceans. Furthermore, the model systematically underestimates SS over the warm tropical waters of the Central Pacific, Atlantic, and Indian Oceans. This pattern is confirmed by SS measurements from a global network of 15 island and coastal stations. The model discrepancy at high wind speeds (>6 m s −1 ) has a clear dependence on sea surface temperature (SST). We use the cruise observations to derive an empirical SS source function depending on both wind speed and SST. Implementing this new source function in GEOS-Chem results in improved agreement with in situ observations, with a decrease in the model bias from +64% to +33% for the cruises and from +32% to −5% for the ground-based sites. We also show that the wind speed-SST source function significantly improves agreement with MODIS and AERONET AOD, and provides an explanation for the high AOD observed over the tropical oceans. With the wind speed-SST formulation, global SS emissions show a small decrease from 5200 Mg yr −1 to 4600 Mg yr −1 , while the SS burden decreases from 9.1 to 8.5 mg m −2 . The spatial distribution of SS, however, is greatly affected, with the SS burden increasing by 50% in the tropics and decreasing by 40% at mid- and high-latitudes. Our results imply a stronger than expected halogen source from SS in the tropical marine boundary layer. They also imply stronger radiative forcing of SS in the tropics and a larger response of SS emissions to climate change than previously thought.

[1]  A. Berner,et al.  The size distribution of the urban aerosol in Vienna , 1979 .

[2]  J. Hansen,et al.  Global temperature change , 2006, Proceedings of the National Academy of Sciences.

[3]  A. L. Dick,et al.  Climatic context of the First Aerosol Characterization Experiment (ACE 1): A meteorological and chemical overview , 1998 .

[4]  Jean-Pierre Blanchet,et al.  Modeling sea-salt aerosols in the atmosphere 1. Model development , 1997 .

[5]  Edward C. Monahan,et al.  Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed , 1980 .

[6]  S F Chen,et al.  Viscosity of sea water solutions , 1973 .

[7]  J. Reid,et al.  Update to “Reconciliation of coarse mode sea‐salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site” regarding the use of aerodynamic particle sizers in marine environments , 2007 .

[8]  S. Hsu,et al.  Determining the power-law wind-profile exponent under near-neutral stability conditions at sea , 1994 .

[9]  D. Jacob,et al.  Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere , 2006 .

[10]  C. Land,et al.  A Comparison of Model- and Satellite-Derived Aerosol Optical Depth and Reflectivity , 2002 .

[11]  Stephen E. Schwartz,et al.  Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models - A Critical Review , 2004 .

[12]  D. Jacob,et al.  Constraints from 210Pb and 7Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields , 2001 .

[13]  Yoram J. Kaufman,et al.  Aerosol distribution in the Northern Hemisphere during ACE‐Asia: Results from global model, satellite observations, and Sun photometer measurements , 2004 .

[14]  D. Woolf,et al.  Discriminating between the film drops and jet drops produced by a simulated whitecap , 1987 .

[15]  Hermann E. Gerber,et al.  Relative - Humidity Parameterization of the Navy Aerosol Model (NAM) , 1985 .

[16]  Jiangnan Li,et al.  Atmospheric Chemistry and Physics Modelling Sea Salt Aerosol and Its Direct and Indirect Effects on Climate , 2022 .

[17]  Jean-Pierre Blanchet,et al.  Modeling sea‐salt aerosols in the atmosphere: 2. Atmospheric concentrations and fluxes , 1997 .

[18]  P. Quinn,et al.  Chemical and optical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport , 1996 .

[19]  Leiming Zhang,et al.  A size-segregated particle dry deposition scheme for an atmospheric aerosol module , 2001 .

[20]  G. Leeuw,et al.  Surfactants and submicron sea spray generation , 2006 .

[21]  D. Blanchard,et al.  The Production, Distribution, and Bacterial Enrichment of the Sea-Salt Aerosol , 1983 .

[22]  Brent N. Holben,et al.  An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products , 2005 .

[23]  D. E. Spiel,et al.  A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption , 1986 .

[24]  Jeffrey S. Reid,et al.  MODIS aerosol product analysis for data assimilation: Assessment of over‐ocean level 2 aerosol optical thickness retrievals , 2006 .

[25]  Lorraine Remer,et al.  A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[26]  W. Slinn,et al.  Predictions for particle deposition to vegetative canopies , 1982 .

[27]  M. H. Smith,et al.  Marine aerosol, sea-salt, and the marine sulphur cycle: a short review , 1997 .

[28]  A. Lewis,et al.  Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean , 2008, Nature.

[29]  Paul J. Crutzen,et al.  Iodine Chemistry and its Role in Halogen Activation and Ozone Loss in the Marine Boundary Layer: A Model Study , 1999 .

[30]  Ferris Webster,et al.  Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps , 2006 .

[31]  Jean-Francois Lamarque,et al.  Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates , 2006 .

[32]  Ian G. McKendry,et al.  Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation , 2003 .

[33]  M. H. Smith,et al.  Effect on global warming of wind-dependent aerosol generation at the ocean surface , 1990, Nature.

[34]  R. A. Cox,et al.  Tropospheric bromine chemistry and its impacts on ozone: A model study , 2005 .

[35]  P. Quinn,et al.  Dominant aerosol chemical components and their contribution to extinction during the Aerosols99 cruise across the Atlantic , 2001 .

[36]  P. Adams,et al.  Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt , 2006 .

[37]  P. Crutzen,et al.  Impact of reactive bromine chemistry in the troposphere , 2004 .

[38]  Mian Chin,et al.  Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results , 1997 .

[39]  David K. Woolf,et al.  Temperature dependence of the charge and aerosol production associated with a breaking wave in a whitecap simulation tank , 1990 .

[40]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[41]  I. Tegen Reply [to "Comment on `Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results' by Tegen et al."] , 1999 .

[42]  R. Martin,et al.  Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols , 2003 .

[43]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[44]  B. Huebert,et al.  Sea-salt vertical profiles over the Southern and tropical Pacific oceans : Microphysics, optical properties, spatial variability, and variations with wind speed , 2004 .

[45]  M. Dubey,et al.  Satellite remote sensing of aerosols generated by the Island of Nauru , 2006 .

[46]  Alexander Smirnov,et al.  Maritime Aerosol Network as a component of Aerosol Robotic Network , 2009 .

[47]  M. Schulz,et al.  Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol , 2001 .

[48]  W. Collins,et al.  Global climate projections , 2007 .

[49]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[50]  Marcin L. Witek,et al.  Global sea‐salt modeling: Results and validation against multicampaign shipboard measurements , 2007 .

[51]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[52]  Michael J. Garay,et al.  Satellite-derived aerosol optical depth over dark water from MISR and MODIS : Comparisons with AERONET and implications for climatological studies , 2007 .

[53]  W. Slinn,et al.  Predictions for particle deposition on natural waters , 1980 .

[54]  G. Leeuw,et al.  Relative contribution of submicron and supermicron particles to aerosol light scattering in the marine boundary layer , 2002 .

[55]  P. Quinn,et al.  Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1) , 1998 .

[56]  P. Quinn,et al.  Processes controlling the distribution of aerosol particles in the marine boundary layer during ACE-1 , 1998 .

[57]  Hugh Coe,et al.  Laboratory-generated primary marine aerosol via bubble-bursting and atomization , 2009 .

[58]  P. Adams,et al.  Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations , 2009 .

[59]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[60]  S. Gong,et al.  A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles , 2003 .

[61]  E. Nilsson,et al.  Laboratory simulations and parameterization of the primary marine aerosol production , 2003 .

[62]  S. Kreidenweis,et al.  Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer , 1998, Nature.

[63]  Timothy S. Bates,et al.  Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS , 2005 .

[64]  A. Clarke,et al.  An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere , 2006 .

[65]  Lorraine Remer,et al.  A Critical Look at Deriving Monthly Aerosol Optical Depth From Satellite Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[66]  P. Forster,et al.  Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds , 2010 .

[67]  Hajime Okamoto,et al.  Global three‐dimensional simulation of aerosol optical thickness distribution of various origins , 2000 .

[68]  M. Smith,et al.  The sea spray generation function , 1998 .

[69]  G. Leeuw,et al.  Production of sea spray aerosol in the surf zone , 2000 .

[70]  Abderrahim Bentamy,et al.  Ocean surface wind fields estimated from satellite active and passive microwave instruments , 1999, IEEE Trans. Geosci. Remote. Sens..

[71]  Ramaswamy,et al.  Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans. , 1999, Science.

[72]  S. Pandis,et al.  Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols , 1992, Nature.

[73]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[74]  M. Chin,et al.  Natural and transboundary pollution influences on sulfate‐nitrate‐ammonium aerosols in the United States: Implications for policy , 2004 .

[75]  P. Chylek,et al.  Contribution of sea salt aerosol to the planetary clear-sky albedo , 1997 .

[76]  Thomas F. Eck,et al.  Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site , 2006 .

[77]  Joseph M. Prospero,et al.  Aerosol concentration statistics for the Northern Tropical Atlantic , 1977 .

[78]  Axel Lauer,et al.  The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment , 2007 .

[79]  E. L. Andreas A New Sea Spray Generation Function for Wind Speeds up to 32 m s−1 , 1998 .

[80]  M. McElroy,et al.  Impacts of boundary layer mixing on pollutant vertical profiles in the lower troposphere: Implications to satellite remote sensing , 2010 .

[81]  G. Myhre,et al.  Modeling the Annual Cycle of Sea Salt in the Global 3D Model Oslo CTM2: Concentrations, Fluxes, and Radiative Impact. , 2002 .

[82]  Yan Feng,et al.  Uncertainties in global aerosol simulations: Assessment using three meteorological data sets , 2007 .

[83]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[84]  Yoram J. Kaufman,et al.  Evaluation of the MODIS Retrievals of Dust Aerosol over the Ocean during PRIDE , 2002 .

[85]  M. H. Smith,et al.  Physicochemical properties of aerosols over the northeast Atlantic: Evidence for wind‐speed‐related submicron sea‐salt aerosol production , 1993 .

[86]  E. Swietlicki,et al.  Hygroscopic growth of aerosol particles in the marine boundary layer over the Pacific and Southern Oceans during the First Aerosol Characterization Experiment (ACE 1) , 1998 .

[87]  D. Jacob,et al.  Sulfate Formation in Sea-Salt Aerosols: Constraints from Oxygen Isotopes , 2005 .

[88]  Jonathan O. Allen,et al.  Mass flux and ionic composition of foam droplets generated from natural and artificial seawaters , 2007 .

[89]  P. Quinn,et al.  Aerosol optical properties in the marine boundary layer during the First Aerosol Characterization Experiment (ACE 1) and the underlying chemical and physical aerosol properties , 1998 .

[90]  François-Marie Bréon,et al.  Aerosol vertical distribution in dust outflow over the Atlantic: Comparisons between GEOS‐Chem and Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) , 2008 .

[91]  John H. Seinfeld,et al.  Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model , 2004 .

[92]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[93]  P. Quinn,et al.  Regional marine boundary layer aerosol size distributions in the Indian, Atlantic, and Pacific Oceans: A comparison of INDOEX measurements with ACE‐1, ACE‐2, and Aerosols99 , 2002 .