Social Media Visual Analytics

With the development of social media (e.g. Twitter, Flickr, Foursquare, Sina Weibo, etc.), a large number of people are now using them and post microblogs, messages and multi‐media information. The everyday usage of social media results in big open social media data. The data offer fruitful information and reflect social behaviors of people. There is much visualization and visual analytics research on such data. We collect state‐of‐the‐art research and put it into three main categories: social network, spatial temporal information and text analysis. We further summarize the visual analytics pipeline for the social media, combining the above categories and supporting complex tasks. With these techniques, social media analytics can apply to multiple disciplines. We summarize the applications and public tools to further investigate the challenges and trends.

[1]  Thomas Ertl,et al.  TravelDiff: Visual comparison analytics for massive movement patterns derived from Twitter , 2016, 2016 IEEE Pacific Visualization Symposium (PacificVis).

[2]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[3]  Daniel Engel,et al.  Visual exploration of Location-Based Social Networks data in urban planning , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[4]  Eben M. Haber,et al.  OpinionBlocks: A Crowd-Powered, Self-improving Interactive Visual Analytic System for Understanding Opinion Text , 2013, INTERACT.

[5]  Chad A. Steed,et al.  Matisse: A visual analytics system for exploring emotion trends in social media text streams , 2015, 2015 IEEE International Conference on Big Data (Big Data).

[6]  Zi Huang,et al.  What are Popular: Exploring Twitter Features for Event Detection, Tracking and Visualization , 2015, ACM Multimedia.

[7]  Jean-Daniel Fekete,et al.  MatLink: Enhanced Matrix Visualization for Analyzing Social Networks , 2007, INTERACT.

[8]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[9]  Nan Cao,et al.  Introduction to Text Visualization , 2016, Atlantis Briefs in Artificial Intelligence.

[10]  William Ribarsky,et al.  LeadLine: Interactive visual analysis of text data through event identification and exploration , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[11]  Victor O. K. Li,et al.  Multi-Source-Driven Asynchronous Diffusion Model for Video-Sharing in Online Social Networks , 2014, IEEE Transactions on Multimedia.

[12]  Yong Gao,et al.  Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data , 2013, PloS one.

[13]  Kwan-Liu Ma,et al.  Multivariate Social Network Visual Analytics , 2013, Multivariate Network Visualization.

[14]  William Ribarsky,et al.  I‐SI: Scalable Architecture for Analyzing Latent Topical‐Level Information From Social Media Data , 2012, Comput. Graph. Forum.

[15]  Xiaohua Sun,et al.  Whisper: Tracing the Spatiotemporal Process of Information Diffusion in Real Time , 2012, IEEE Transactions on Visualization and Computer Graphics.

[16]  Ching-Yung Lin,et al.  TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems , 2016, IEEE Transactions on Visualization and Computer Graphics.

[17]  Fangzhao Wu,et al.  OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[18]  David S. Ebert,et al.  Public behavior response analysis in disaster events utilizing visual analytics of microblog data , 2014, Comput. Graph..

[19]  Thomas Liebig,et al.  Visual Analytics for Understanding Spatial Situations from Episodic Movement Data , 2012, KI - Künstliche Intelligenz.

[20]  Nancy Argüelles,et al.  Author ' s , 2008 .

[21]  Fei Wang,et al.  PEARL: An interactive visual analytic tool for understanding personal emotion style derived from social media , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[22]  Thomas Ertl,et al.  Integrating predictive analytics and social media , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[23]  Daniel M. Best,et al.  Web-Based Visual Analytics for Social Media , 2012, Proceedings of the International AAAI Conference on Web and Social Media.

[24]  Yuchen Cui,et al.  Trajectory-based Visual Analytics for Anomalous Human Movement Analysis using Social Media , 2015, EuroVA@EuroVis.

[25]  William Ribarsky,et al.  DemographicVis: Analyzing demographic information based on user generated content , 2015, 2015 IEEE Conference on Visual Analytics Science and Technology (VAST).

[26]  Ludo Waltman,et al.  CitNetExplorer: A new software tool for analyzing and visualizing citation networks , 2014, J. Informetrics.

[27]  Weiwei Cui,et al.  How Hierarchical Topics Evolve in Large Text Corpora , 2014, IEEE Transactions on Visualization and Computer Graphics.

[28]  Jürgen Symanzik,et al.  Extracting Semantics of Individual Places from Movement Data by Analyzing Temporal Patterns of Visits , 2013, COMP '13.

[29]  Tomaso Aste,et al.  When Can Social Media Lead Financial Markets? , 2014, Scientific Reports.

[30]  R. Plutchik The Nature of Emotions , 2001 .

[31]  Ana-Maria Popescu,et al.  A Machine Learning Approach to Twitter User Classification , 2011, ICWSM.

[32]  Mor Naaman,et al.  Social Media Visual Analytics for Events , 2011, Social Media Modeling and Computing.

[33]  Xiaoru Yuan,et al.  Interactive Visual Discovering of Movement Patterns from Sparsely Sampled Geo-tagged Social Media Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[34]  R. Plutchik Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice , 2016 .

[35]  Daniel A. Keim,et al.  A Survey on Visual Analytics of Social Media Data , 2016, IEEE Transactions on Multimedia.

[36]  William Ribarsky,et al.  HierarchicalTopics: Visually Exploring Large Text Collections Using Topic Hierarchies , 2013, IEEE Transactions on Visualization and Computer Graphics.

[37]  Jean-Daniel Fekete,et al.  MatrixExplorer: a Dual-Representation System to Explore Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[38]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[39]  Georges G. Grinstein,et al.  The VAST Challenge: history, scope, and outcomes: An introduction to the Special Issue , 2014, Inf. Vis..

[40]  Ben Shneiderman,et al.  Analyzing Social Media Networks with NodeXL: Insights from a Connected World , 2010 .

[41]  Edward A. Fox,et al.  Social media use by government: From the routine to the critical , 2012, Gov. Inf. Q..

[42]  Axel Platz,et al.  Can twitter really save your life? A case study of visual social media analytics for situation awareness , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[43]  Daniel A. Keim,et al.  Real-Time Visual Analytics for Text Streams , 2013, Computer.

[44]  Yi Zhang,et al.  iOLAP: A Framework for Analyzing the Internet, Social Networks, and Other Networked Data , 2009, IEEE Transactions on Multimedia.

[45]  Yifan Hu,et al.  Interactive Visualization of Streaming Text Data with Dynamic Maps , 2013, J. Graph Algorithms Appl..

[46]  Xiaoru Yuan,et al.  Visualization of social media flows with interactively identified key players , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[47]  William Ribarsky,et al.  Social media analytics for competitive advantage , 2014, Comput. Graph..

[48]  Ulrik Brandes,et al.  Asymmetric Relations in Longitudinal Social Networks , 2011, IEEE Transactions on Visualization and Computer Graphics.

[49]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[50]  Fabian Beck,et al.  The State of the Art in Visualizing Group Structures in Graphs , 2015, EuroVis.

[51]  Andreas Kerren,et al.  Text visualization techniques: Taxonomy, visual survey, and community insights , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[52]  Derek Greene,et al.  ThemeCrowds: multiresolution summaries of twitter usage , 2011, SMUC '11.

[53]  Tovi Grossman,et al.  Citeology: visualizing paper genealogy , 2012, CHI EA '12.

[54]  Andrew Vande Moere,et al.  FlowSampler: Visual Analysis of Urban Flows in Geolocated Social Media Data , 2014, SocInfo Workshops.

[55]  Daniel A. Keim,et al.  Feature-Based Visual Sentiment Analysis of Text Document Streams , 2012, TIST.

[56]  Michael Burch,et al.  A Taxonomy and Survey of Dynamic Graph Visualization , 2017, Comput. Graph. Forum.

[57]  Michael S. Bernstein,et al.  Twitinfo: aggregating and visualizing microblogs for event exploration , 2011, CHI.

[58]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[59]  Kang Zhang,et al.  Analysis of micro-blog diffusion using a dynamic fluid model , 2015, J. Vis..

[60]  Xiaoru Yuan,et al.  A platform for collaborative visual analysis on streaming messages , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[61]  Pierre Dragicevic,et al.  GraphDice: A System for Exploring Multivariate Social Networks , 2010, Comput. Graph. Forum.

[62]  Tina Eliassi-Rad,et al.  Visual Analysis of Large Heterogeneous Social Networks by Semantic and Structural Abstraction , 2006 .

[63]  Michael Burch,et al.  The State of the Art in Visualizing Dynamic Graphs , 2014, EuroVis.

[64]  Daniel A. Keim,et al.  Visual Analysis of Social Media Data , 2013, Computer.

[65]  Thomas Ertl,et al.  Spatiotemporal anomaly detection through visual analysis of geolocated Twitter messages , 2012, 2012 IEEE Pacific Visualization Symposium.

[66]  Duncan J. Watts,et al.  Who says what to whom on twitter , 2011, WWW.

[67]  Lucy T. Nowell,et al.  ThemeRiver: visualizing theme changes over time , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[68]  Qinying Liao,et al.  An Uncertainty-Aware Approach for Exploratory Microblog Retrieval , 2015, IEEE Transactions on Visualization and Computer Graphics.

[69]  Anthony Stefanidis,et al.  Geosocial gauge: a system prototype for knowledge discovery from social media , 2013, Int. J. Geogr. Inf. Sci..

[70]  Yingcai Wu,et al.  Visual Analysis of Topic Competition on Social Media , 2013, IEEE Transactions on Visualization and Computer Graphics.

[71]  Ross Maciejewski,et al.  Business Intelligence from Social Media: A Study from the VAST Box Office Challenge , 2014, IEEE Computer Graphics and Applications.

[72]  Lun Wu,et al.  Intra-Urban Human Mobility and Activity Transition: Evidence from Social Media Check-In Data , 2014, PloS one.

[73]  Baining Guo,et al.  How ideas flow across multiple social groups , 2016, 2016 IEEE Conference on Visual Analytics Science and Technology (VAST).

[74]  Edward A. Fox,et al.  Social media use by government: from the routine to the critical , 2011, dg.o '11.

[75]  M. Sheelagh T. Carpendale,et al.  A Visual Backchannel for Large-Scale Events , 2010, IEEE Transactions on Visualization and Computer Graphics.

[76]  Yuhua Liu,et al.  Time-space varying visual analysis of micro-blog sentiment , 2013, VINCI '13.

[77]  David S. Ebert,et al.  Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[78]  Yale Song,et al.  #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[79]  Mengchen Liu,et al.  StoryFlow: Tracking the Evolution of Stories , 2013, IEEE Transactions on Visualization and Computer Graphics.

[80]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[81]  P. John Clarkson,et al.  Matrices or Node-Link Diagrams: Which Visual Representation is Better for Visualising Connectivity Models? , 2006, Inf. Vis..

[82]  Urs Gasser,et al.  Teens, social media, and privacy , 2013 .

[83]  Daniel A. Keim,et al.  Integrated visual analysis of patterns in time series and text data - Workflow and application to financial data analysis , 2016, Inf. Vis..

[84]  Xiaotong Liu,et al.  SocialBrands: Visual analysis of public perceptions of brands on social media , 2016, 2016 IEEE Conference on Visual Analytics Science and Technology (VAST).

[85]  Thomas Ertl,et al.  Semantic Enrichment of Movement Behavior with Foursquare–A Visual Analytics Approach , 2015, IEEE Transactions on Visualization and Computer Graphics.

[86]  Changsheng Xu,et al.  Multi-Modal Event Topic Model for Social Event Analysis , 2016, IEEE Transactions on Multimedia.

[87]  Florian Stoffel,et al.  NStreamAware: Real-Time visual analytics for data streams (VAST Challenge 2014 MC3) , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[88]  Jimeng Sun,et al.  Social influence analysis in large-scale networks , 2009, KDD.

[89]  Yun Jang,et al.  Predictive Visual Analytics using Topic Composition , 2015, VINCI.

[90]  Philip C. Treleaven,et al.  Social media analytics: a survey of techniques, tools and platforms , 2014, AI & SOCIETY.

[91]  Yingcai Wu,et al.  EvoRiver: Visual Analysis of Topic Coopetition on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[92]  Baining Guo,et al.  Let It Flow: A Static Method for Exploring Dynamic Graphs , 2014, 2014 IEEE Pacific Visualization Symposium.

[93]  Xiaoru Yuan,et al.  D-Map: Visual analysis of ego-centric information diffusion patterns in social media , 2016, 2016 IEEE Conference on Visual Analytics Science and Technology (VAST).

[94]  Daniel A. Keim,et al.  State-of-the-Art Report of Visual Analysis for Event Detection in Text Data Streams , 2014, EuroVis.

[95]  Anuj R. Jaiswal,et al.  Analytics : Applications in Crisis Management , 2011 .

[96]  Xiao Zhang,et al.  SensePlace2: GeoTwitter analytics support for situational awareness , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[97]  Mor Naaman,et al.  Diamonds in the rough: Social media visual analytics for journalistic inquiry , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[98]  Martin Wattenberg,et al.  Participatory Visualization with Wordle , 2009, IEEE Transactions on Visualization and Computer Graphics.

[99]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[100]  M. Sheelagh T. Carpendale,et al.  Personal Visualization and Personal Visual Analytics , 2015, IEEE Transactions on Visualization and Computer Graphics.

[101]  Quan Li,et al.  Visual analysis of retweeting propagation network in a microblogging platform , 2013, VINCI '13.

[102]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[103]  Xiaoru Yuan,et al.  Weibo Footprint: A Web-based Visualization System to Analyzing Spatial-temporal Movement of Geo-tagged Social Media Users , 2016 .

[104]  Martin Wattenberg,et al.  Google+Ripples: a native visualization of information flow , 2013, WWW '13.

[105]  John T. Stasko,et al.  Visualizing Social Media Content with SentenTree , 2017, IEEE Transactions on Visualization and Computer Graphics.

[106]  Thomas Ertl,et al.  ScatterBlogs2: Real-Time Monitoring of Microblog Messages through User-Guided Filtering , 2013, IEEE Transactions on Visualization and Computer Graphics.

[107]  Qingming Huang,et al.  Unsupervised Web Topic Detection Using A Ranked Clustering-Like Pattern Across Similarity Cascades , 2015, IEEE Transactions on Multimedia.

[108]  Xin Zhang,et al.  WeiboEvents: A Crowd Sourcing Weibo Visual Analytic System , 2014, 2014 IEEE Pacific Visualization Symposium.

[109]  Mor Naaman,et al.  CityBeat: real-time social media visualization of hyper-local city data , 2014, WWW.

[110]  A. Kaplan,et al.  Users of the world, unite! The challenges and opportunities of Social Media , 2010 .

[111]  William Ribarsky,et al.  Less After-the-Fact: Investigative visual analysis of events from streaming twitter , 2013, 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV).

[112]  Andreas Kerren,et al.  Visual analysis of online social media to open up the investigation of stance phenomena , 2015, Inf. Vis..

[113]  Jian Pei,et al.  Online Visual Analytics of Text Streams , 2015, IEEE Transactions on Visualization and Computer Graphics.