Cosmological parameter estimation using Particle Swarm Optimization (PSO)

Obtaining the set of cosmological parameters consistent with observational data is an important exercise in current cosmological research. It involves finding the global maximum of the likelihood function in the multi-dimensional parameter space. Currently sampling based methods, which are in general stochastic in nature, like Markov-Chain Monte Carlo(MCMC), are being commonly used for parameter estimation. The beauty of stochastic methods is that the computational cost grows, at the most, linearly in place of exponentially (as in grid based approaches) with the dimensionality of the search space. MCMC methods sample the full joint probability distribution (posterior) from which one and two dimensional probability distributions, best fit (average) values of parameters and then error bars can be computed. In the present work we demonstrate the application of another stochastic method, named Particle Swarm Optimization (PSO), that is widely used in the field of engineering and artificial intelligence, for cosmological parameter estimation from WMAP seven years data. We find that there is a good agreement between the values of the best fit parameters obtained from PSO and publicly available code COSMOMC. However, there is a slight disagreement between error bars mainly due to the fact that errors are computed differently in PSO. Apart from presenting the results of our exercise, we also discuss the merits of PSO and explain its usefulness in more extensive search in higher dimensional parameter space.

[1]  W. Marsden I and J , 2012 .

[2]  Jason D. Fiege,et al.  GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS , 2011, 1101.5803.

[3]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2010, 1001.4744.

[4]  T. Souradeep,et al.  Primordial features due to a step in the inflaton potential , 2010, 1005.2175.

[5]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[6]  Yan Wang,et al.  Particle swarm optimization and gravitational wave data analysis: Performance on a binary inspiral testbed , 2010 .

[7]  L. Verde Statistical Methods in Cosmology , 2009, 0911.3105.

[8]  Antony Lewis,et al.  Properties and use of CMB power spectrum likelihoods , 2009, 0902.0674.

[9]  Aleksandar Lazinica Particle Swarm Optimization , 2009 .

[10]  Antony Lewis,et al.  Likelihood Analysis of CMB Temperature and Polarization Power Spectra , 2008, 0801.0554.

[11]  S. Gull,et al.  Fast cosmological parameter estimation using neural networks , 2006, astro-ph/0608174.

[12]  Michael N. Vrahatis,et al.  Particle Swarm Optimization: An efficient method for tracing periodic orbits in 3D galactic potentials , 2005, ArXiv.

[13]  D.H. Werner,et al.  Particle swarm optimization versus genetic algorithms for phased array synthesis , 2004, IEEE Transactions on Antennas and Propagation.

[14]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[15]  R. Wilson Modern Cosmology , 2004 .

[16]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003, astro-ph/0302218.

[17]  L. Knox,et al.  Normal Parameters for an Analytic Description of the Cosmic Microwave Background Cosmological Parameter Likelihood , 2002, astro-ph/0212466.

[18]  R. Jimenez,et al.  Efficient cosmological parameter estimation from microwave background anisotropies , 2002, astro-ph/0206014.

[19]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[20]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[21]  Andries P. Engelbrecht,et al.  Introduction to Computational Intelligence , 2007 .

[22]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[23]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[24]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[25]  Spergel,et al.  Cosmological-parameter determination with microwave background maps. , 1996, Physical review. D, Particles and fields.

[26]  Wayne Hu Concepts in CMB anisotropy formation , 1995, astro-ph/9511130.

[27]  D. Spergel,et al.  Weighing the universe with the cosmic microwave background. , 1995, Physical review letters.

[28]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[29]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[30]  Physical Review Letters 63 , 1989 .

[31]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[32]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .