Method for extracting the complex dielectric function of nanospheres in a water matrix from surface-plasmon resonance data

The problem of the retrieval of the complex dielectric function of nanoparticles having multiple spectral features is addressed. It is shown that the complex dielectric function of nanoparticles that are in a water matrix can be obtained with a maximum entropy model along with surface-plasmon resonance spectroscopy. The present analysis provides means to identify nanoparticles and to gain information on their concentration, which are important factors in the monitoring of nanoparticles in liquid phase.

[1]  E. Sambriski,et al.  Surface Plasmon Spectral Fingerprinting of Adsorbed Magnesium Phthalocyanine by Angle and Wavelength Modulation , 2004, Applied spectroscopy.

[2]  K. Peiponen,et al.  Retrieval of the complex permittivity of spherical nanoparticles in a liquid host material from a spectral surface plasmon resonance measurement , 2003 .

[3]  K. Peiponen,et al.  Simulation on Wavelength-Dependent Complex Refractive Index of Liquids Obtained by Phase Retrieval from Reflectance Dip Due to Surface Plasmon Resonance , 2003, Applied spectroscopy.

[4]  K. Peiponen,et al.  Measurement of Wavelength-Dependent Complex Refractive Index of Transparent and Absorbing Liquids by a Multifunction Reflectometer , 2002 .

[5]  J. Brun,et al.  Dispersion Relations and Phase Retrieval in Infrared Reflection Spectra Analysis , 2001 .

[6]  S J Tendler,et al.  Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. , 2000, Biomaterials.

[7]  Ravi Kumar M.N.V. Nano and microparticles as controlled drug delivery devices. , 2000 .

[8]  K. F. Palmer,et al.  Multiply subtractive kramers-kronig analysis of optical data. , 1998, Applied optics.

[9]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[10]  Robert W. Boyd,et al.  Nonlinear-optical response of porous-glass-based composite materials , 1997 .

[11]  Toshimitsu Asakura,et al.  Phase Retrieval in Optical Spectroscopy: Resolving Optical Constants from Power Spectra , 1996 .

[12]  Vartiainen,et al.  Meromorphic degenerate nonlinear susceptibility: Phase retrieval from the amplitude spectrum. , 1994, Physical review. B, Condensed matter.

[13]  John E. Sipe,et al.  Nonlinear optical susceptibilities of layered composite materials , 1994 .

[14]  K. Peiponen,et al.  Generalized noniterative maximum entropy procedure for phase retrieval problems in optical spectroscopy , 1993 .

[15]  Boyd,et al.  Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[16]  P. Grosse,et al.  Analysis of reflectance data using the Kramers-Kronig Relations , 1991 .

[17]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[18]  S. Kawata,et al.  Optical chemical sensor based on surface plasmon measurement. , 1988, Applied optics.

[19]  John E. Sipe,et al.  New Green-function formalism for surface optics , 1987 .

[20]  Toshimitsu Asakura,et al.  UV-visible reflection spectroscopy of liquids , 2004 .

[21]  T. Asakura,et al.  Dispersion, Complex Analysis and Optical Spectroscopy , 1999 .

[22]  D. Lynch,et al.  Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals , 1997 .

[23]  B. Liedberg,et al.  Gas detection by means of surface plasmon resonance , 1982 .

[24]  J. Sipe Surface plasmon-enhanced absorption of light by adsorbed molecules , 1980 .

[25]  S. Haykin,et al.  Prediction-Error Filtering and Maximum-Entropy Spectral Estimation (With 16 Figures) , 1979 .

[26]  J. R. Partington,et al.  An advanced treatise on physical chemistry , 1949 .

[27]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[28]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .