Directions and projective shapes
暂无分享,去创建一个
[1] T. Ferguson. A Course in Large Sample Theory , 1996 .
[2] Fred L. Bookstein,et al. Morphometric Tools for Landmark Data. , 1998 .
[3] Kanti V. Mardia,et al. Shape changes in the plane for landmark data , 1995 .
[4] H. Ziezold. On Expected Figures and a Strong Law of Large Numbers for Random Elements in Quasi-Metric Spaces , 1977 .
[5] N. Fisher,et al. Nonparametric comparison of mean directions or mean axes , 1998 .
[6] Nicholas I. Fisher,et al. Improved pivotal methods for constructing confidence regions with directional data , 1996 .
[7] L. Vanhecke,et al. Homogeneous Structures on Riemannian Manifolds , 1983 .
[8] G. S. Watson,et al. ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIRCLE AND THE SPHERE , 1956 .
[9] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[10] Anuj Srivastava,et al. Monte Carlo extrinsic estimators of manifold-valued parameters , 2002, IEEE Trans. Signal Process..
[11] Gunnar Sparr. Depth computations from polyhedral images , 1992, Image Vis. Comput..
[12] T. K. Carne,et al. Shape and Shape Theory , 1999 .
[13] K. Mardia,et al. Statistical Shape Analysis , 1998 .
[14] D. Kendall. SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .
[15] K. Mardia,et al. Multivariate Aspects of Shape Theory , 1993 .
[16] M. J. Prentice. A distribution-free method of interval estimation for unsigned directional data , 1984 .
[17] K. Mardia,et al. Projective Shape Analysis , 1999 .
[18] R. Bhattacharya,et al. LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II , 2003 .
[19] Harshinder Singh,et al. Probabilistic model for two dependent circular variables , 2002 .
[20] A. Heyden. Geometry and algebra of multiple projective transformations , 1995 .