An Unoriented Variation on de Bruijn Sequences
暂无分享,去创建一个
[1] S. Louis Hakimi,et al. Fault-Tolerant Routing in DeBruijn Comrnunication Networks , 1985, IEEE Transactions on Computers.
[2] Patrick D. Shipman,et al. A Point of Tangency Between Combinatorics and Differential Geometry , 2015, Am. Math. Mon..
[3] Patrick D. Shipman,et al. Optimally Topologically Transitive Orbits in Discrete Dynamical Systems , 2016, Am. Math. Mon..
[4] de Ng Dick Bruijn,et al. Acknowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of $2^n$ zeros and ones that show each n-letter word exactly once , 1975 .
[5] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[6] Kemin Zhang,et al. On (d, 2)-dominating numbers of binary undirected de Bruijn graphs , 2000, Discret. Appl. Math..
[7] Hung-Lin Fu,et al. On the diameter of the generalized undirected de Bruijn graphs UGB(n,m), n2 < m ≤ n3 , 2008, Networks.
[8] C. Hierholzer,et al. Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren , 1873 .
[9] Hung-Lin Fu,et al. On the Diameter of the Generalized Undirected De Bruijn Graphs , 2012, Ars Comb..
[11] Jack Edmonds,et al. Matching, Euler tours and the Chinese postman , 1973, Math. Program..
[12] S. Louis Hakimi,et al. Fault-tolerant routing in DeBruijn communication networks , 1994 .