Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10

[1]  Bianca Nijmeijer,et al.  Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. , 2013, Structure.

[2]  Anne K. Braczynski,et al.  ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation , 2013, Cell Communication and Signaling.

[3]  Anne K. Braczynski,et al.  ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation , 2013, Cell Communication and Signaling.

[4]  W. Kraus,et al.  New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs , 2012, Nature Reviews Molecular Cell Biology.

[5]  Zhijian J. Chen,et al.  Ubiquitination in signaling to and activation of IKK , 2012, Immunological reviews.

[6]  M. Karin,et al.  NF‐κB and the link between inflammation and cancer , 2012, Immunological reviews.

[7]  Shengqing Gu,et al.  Loss of Tankyrase-Mediated Destruction of 3BP2 Is the Underlying Pathogenic Mechanism of Cherubism , 2011, Cell.

[8]  T. Pawson,et al.  Structural Basis and Sequence Rules for Substrate Recognition by Tankyrase Explain the Basis for Cherubism Disease , 2011, Cell.

[9]  M. Gaestel,et al.  Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines. , 2011, Biochimica et biophysica acta.

[10]  S. Ghosh,et al.  Crosstalk in NF-κB signaling pathways , 2011, Nature Immunology.

[11]  David P. Davis,et al.  Ubiquitin Ligase RNF146 Regulates Tankyrase and Axin to Promote Wnt Signaling , 2011, PloS one.

[12]  K. Khabar,et al.  Green Fluorescent Protein Reporter System with Transcriptional Sequence Heterogeneity for Monitoring the Interferon Response , 2011, Journal of Virology.

[13]  A. Bauer,et al.  RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling , 2011, Nature Cell Biology.

[14]  Yang Yu,et al.  TAK1 Lys-158 but not Lys-209 is required for IL-1β-induced Lys63-linked TAK1 polyubiquitination and IKK/NF-κB activation. , 2011, Cellular signalling.

[15]  Bernhard Lüscher,et al.  Toward a unified nomenclature for mammalian ADP-ribosyltransferases. , 2010, Trends in biochemical sciences.

[16]  J. Carlis,et al.  Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. , 2009, The Journal of clinical investigation.

[17]  Zhijian J. Chen,et al.  A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. , 2009, Molecular cell.

[18]  Soichi Wakatsuki,et al.  Ubiquitin-binding domains — from structures to functions , 2009, Nature Reviews Molecular Cell Biology.

[19]  Marc W. Kirschner,et al.  Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling , 2009, Nature.

[20]  Hung‐wen Liu,et al.  Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications. , 2009, Journal of the American Chemical Society.

[21]  M. Washburn,et al.  Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler , 2009, Proceedings of the National Academy of Sciences.

[22]  E. Stelzer,et al.  A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation , 2009, Nature Structural &Molecular Biology.

[23]  J. Radolf,et al.  Activation of Human Monocytes by Live Borrelia burgdorferi Generates TLR2-Dependent and -Independent Responses Which Include Induction of IFN-β , 2009, PLoS pathogens.

[24]  Simon Messner,et al.  Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites , 2009, Nucleic acids research.

[25]  M. Schmitz,et al.  Phosphorylation of NF‐κB p65 at Ser468 controls its COMMD1‐dependent ubiquitination and target gene‐specific proteasomal elimination , 2009, EMBO reports.

[26]  M. Schmitz,et al.  Autoregulatory feedback loops terminating the NF-kappaB response. , 2009, Trends in biochemical sciences.

[27]  Zhijian J. Chen,et al.  Nonproteolytic functions of ubiquitin in cell signaling. , 2009, Molecular cell.

[28]  D. Litchfield,et al.  Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. , 2008, Molecular cell.

[29]  Stephen C. West,et al.  Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins , 2008, Nature.

[30]  V. Schreiber,et al.  Poly(ADP-ribose): novel functions for an old molecule , 2006, Nature Reviews Molecular Cell Biology.

[31]  B. Lüscher,et al.  Overlap of the gene encoding the novel poly(ADP-ribose) polymerase Parp10 with the plectin 1 gene and common use of exon sequences. , 2005, Genomics.

[32]  E. Kremmer,et al.  PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation , 2005, Oncogene.

[33]  Klaus Resch,et al.  Phosphorylation of Serine 468 by GSK-3β Negatively Regulates Basal p65 NF-κB Activity* , 2004, Journal of Biological Chemistry.

[34]  Stephanie L. H. Miller,et al.  Analysis of the Role of Ubiquitin-interacting Motifs in Ubiquitin Binding and Ubiquitylation*[boxs] , 2004, Journal of Biological Chemistry.

[35]  R. Bernards,et al.  A System for Stable Expression of Short Interfering RNAs in Mammalian Cells , 2002, Science.

[36]  L. Falquet,et al.  A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. , 2001, Trends in biochemical sciences.

[37]  J. Ninomiya-Tsuji,et al.  The MAPK Kinase Kinase TAK1 Plays a Central Role in Coupling the Interleukin-1 Receptor to Both Transcriptional and RNA-targeted Mechanisms of Gene Regulation* , 2001, The Journal of Biological Chemistry.

[38]  K. Irie,et al.  Identification of a Member of the MAPKKK Family as a Potential Mediator of TGF-β Signal Transduction , 1995, Science.

[39]  L. Staszewski,et al.  Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain , 1994, Cell.

[40]  Zhijian J. Chen,et al.  Expanding role of ubiquitination in NF-κB signaling , 2011, Cell Research.

[41]  Klaus Resch,et al.  Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. , 2004, The Journal of biological chemistry.

[42]  L. Staszewski,et al.  Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. , 1994, Cell.