Biomass-based carbon electrode materials for capacitive deionization: a review

[1]  S. Gong,et al.  Porous carbon electrodes from activated wasted coffee grounds for capacitive deionization , 2019, Ionics.

[2]  Revocatus Lazaro Machunda,et al.  Porous carbon derived from Artocarpus heterophyllus peels for capacitive deionization electrodes , 2019, Carbon.

[3]  N. Liu,et al.  Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization , 2019, Separation and Purification Technology.

[4]  H. Yang,et al.  Activated Luffa derived biowaste carbon for enhanced desalination performance in brackish water , 2019, RSC advances.

[5]  Y. Jande,et al.  Removal of lead ions from water by capacitive deionization electrode materials derived from chicken feathers , 2019, Journal of Water Reuse and Desalination.

[6]  P. M. Biesheuvel,et al.  Timeline on the application of intercalation materials in Capacitive Deionization , 2019, Desalination.

[7]  Gong Cheng,et al.  Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization , 2019, Chemical Engineering Journal.

[8]  Liang Chang,et al.  3D Channel-structured graphene as efficient electrodes for capacitive deionization. , 2019, Journal of colloid and interface science.

[9]  Ho Kyong Shon,et al.  Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency , 2019, Desalination.

[10]  H. Lei,et al.  Capacitive deionization of saline water using sandwich-like nitrogen-doped graphene composites via a self-assembling strategy , 2018 .

[11]  Jianyun Liu,et al.  Biomass-derived porous carbon anode for high-performance capacitive deionization , 2018, Electrochimica Acta.

[12]  Liyi Shi,et al.  Removal of ions from saline water using N, P co-doped 3D hierarchical carbon architectures via capacitive deionization , 2018 .

[13]  Chia-Hung Hou,et al.  Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water. , 2018, Chemosphere.

[14]  W. Ni,et al.  Efficient Capacitive Deionization Using Natural Basswood-Derived, Freestanding, Hierarchically Porous Carbon Electrodes. , 2018, ACS applied materials & interfaces.

[15]  Tingting Yan,et al.  N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization , 2018 .

[16]  Cong-jie Gao,et al.  High-Performance Membrane Capacitive Deionization Based on Metal−Organic Framework-Derived Hierarchical Carbon Structures , 2018, ACS omega.

[17]  G. Zeng,et al.  A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties , 2018, Renewable and Sustainable Energy Reviews.

[18]  Woo-Seung Kim,et al.  Parameter-based performance evaluation and optimization of a capacitive deionization desalination process , 2018, Desalination.

[19]  C. Balomajumder,et al.  Removal of Cr(VI) and fluoride by membrane capacitive deionization with nanoporous and microporous Limonia acidissima (wood apple) shell activated carbon electrode , 2018 .

[20]  Liyi Shi,et al.  Improved capacitive deionization by using 3D intercalated graphene sheet–sphere nanocomposite architectures , 2018 .

[21]  L. Chai,et al.  Effect of the electronegativity on the electrosorption selectivity of anions during capacitive deionization. , 2018, Chemosphere.

[22]  Huijun Zhao,et al.  Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization , 2018 .

[23]  H. -. Wang,et al.  Activated carbon recycled from bitter-tea and palm shell wastes for capacitive desalination of salt water , 2018 .

[24]  Bruce Dunn,et al.  Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices , 2018 .

[25]  Liyi Shi,et al.  Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization , 2018, RSC advances.

[26]  J. Yu,et al.  Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization , 2018, RSC advances.

[27]  Fan Zhu,et al.  Porous Biomass Carbon Coated with SiO2 as High Performance Electrodes for Capacitive Deionization , 2017 .

[28]  Liyi Shi,et al.  High Salt Removal Capacity of Metal–Organic Gel Derived Porous Carbon for Capacitive Deionization , 2017 .

[29]  C. Balomajumder,et al.  Tea waste biomass activated carbon electrode for simultaneous removal of Cr(VI) and fluoride by capacitive deionization. , 2017, Chemosphere.

[30]  A. Pogrebnoi,et al.  Biogas-slurry derived mesoporous carbon for supercapacitor applications , 2017 .

[31]  Jianyun Liu,et al.  Preparation of the Lentinus edodes-based porous biomass carbon by hydrothermal method for capacitive desalination , 2017 .

[32]  Somnath Ghosh,et al.  Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization , 2017 .

[33]  Volker Presser,et al.  Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide , 2017 .

[34]  Hong Jiang,et al.  Preparation of N-Doped Supercapacitor Materials by Integrated Salt Templating and Silicon Hard Templating by Pyrolysis of Biomass Wastes , 2017 .

[35]  Tingting Yan,et al.  Graphene-based materials for capacitive deionization , 2017 .

[36]  Liyi Shi,et al.  A facile strategy for the fast construction of porous graphene frameworks and their enhanced electrosorption performance. , 2017, Chemical communications.

[37]  Liyi Shi,et al.  N,P-Codoped Meso-/Microporous Carbon Derived from Biomass Materials via a Dual-Activation Strategy as High-Performance Electrodes for Deionization Capacitors , 2017 .

[38]  Ahmed Alsaedi,et al.  Functionalization of biomass carbonaceous aerogels and their application as electrode materials for electro-enhanced recovery of metal ions , 2017 .

[39]  Liyi Shi,et al.  In Situ Expanding Pores of Dodecahedron-like Carbon Frameworks Derived from MOFs for Enhanced Capacitive Deionization. , 2017, ACS applied materials & interfaces.

[40]  Liyi Shi,et al.  Creating Nitrogen-Doped Hollow Multiyolk@Shell Carbon as High Performance Electrodes for Flow-Through Deionization Capacitors , 2017 .

[41]  A. Pogrebnoi,et al.  Status of Biomass Derived Carbon Materials for Supercapacitor Application , 2017 .

[42]  E. Taer,et al.  Activated carbon electrode from banana-peel waste for supercapacitor applications , 2017 .

[43]  Liyi Shi,et al.  Removal of NaCl from saltwater solutions using micro/mesoporous carbon sheets derived from watermelon peel via deionization capacitors , 2017 .

[44]  Nasser A.M. Barakat,et al.  ZrO2 nanofibers/activated carbon composite as a novel and effective electrode material for the enhancement of capacitive deionization performance , 2017 .

[45]  Volker Presser,et al.  Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water , 2017 .

[46]  Kyle C. Smith,et al.  Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish Water , 2016, 1612.08293.

[47]  Nicolas E. Holubowitch,et al.  Polymer-coated composite anodes for efficient and stable capacitive deionization , 2016 .

[48]  V. Presser,et al.  MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization , 2016 .

[49]  L. Chu,et al.  Facile synthesis of novel hierarchically porous carbon derived from nature biomass for enhanced removal of NaCl. , 2016, Water science and technology : a journal of the International Association on Water Pollution Research.

[50]  M. Noel,et al.  Review on carbon-based electrode materials for application in capacitive deionization process , 2016, International Journal of Environmental Science and Technology.

[51]  M. Anderson,et al.  Study of sugar cane bagasse fly ash as electrode material for capacitive deionization , 2016 .

[52]  Wangwang Tang,et al.  Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization , 2016 .

[53]  Chang Liu,et al.  A flexible cotton-derived carbon sponge for high-performance capacitive deionization , 2016 .

[54]  N. Ellis,et al.  Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl2 solutions , 2016 .

[55]  Liyi Shi,et al.  Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization , 2016 .

[56]  Endarko,et al.  Carbon electrode for desalination purpose in capacitive deionization , 2016 .

[57]  Wei Zhang,et al.  Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review , 2016, Nanoscale Research Letters.

[58]  Peiyu Wang,et al.  Promising activated carbons derived from cabbage leaves and their application in high-performance supercapacitors electrodes , 2016, Journal of Solid State Electrochemistry.

[59]  M. Anderson,et al.  Effect of electrode properties and operational parameters on capacitive deionization using low-cost commercial carbons , 2016 .

[60]  C. Balomajumder,et al.  Capacitive Deionization for Desalination Using Nanostructured Electrodes , 2016 .

[61]  Hua Zhang,et al.  Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores , 2016, Scientific Reports.

[62]  Zongping Shao,et al.  Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors , 2015 .

[63]  M. Zaini,et al.  Potassium hydroxide activation of activated carbon: a commentary , 2015 .

[64]  Y. Liu,et al.  Nitrogen-doped carbon nanorods with excellent capacitive deionization ability , 2015 .

[65]  Volker Presser,et al.  Water desalination via capacitive deionization : What is it and what can we expect from it? , 2015 .

[66]  Chia-Hung Hou,et al.  Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. , 2015 .

[67]  V. Presser,et al.  Capacitive Deionization using Biomass-based Microporous Salt-Templated Heteroatom-Doped Carbons. , 2015, ChemSusChem.

[68]  W. Changming,et al.  Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration , 2015 .

[69]  P. M. Biesheuvel,et al.  Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage. , 2015, Journal of colloid and interface science.

[70]  E. Drioli,et al.  Membrane technology for water production in agriculture: Desalination and wastewater reuse , 2015 .

[71]  P. M. Biesheuvel,et al.  Energy from CO2 using capacitive electrodes - a model for energy extraction cycles. , 2015, Journal of colloid and interface science.

[72]  Y. Liu,et al.  Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization , 2015 .

[73]  Xin Gao,et al.  Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior , 2015 .

[74]  Yong Liu,et al.  Review on carbon-based composite materials for capacitive deionization , 2015 .

[75]  Seung Jin Oh,et al.  Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles , 2015 .

[76]  John H. Lienhard,et al.  Scaling and fouling in membrane distillation for desalination applications: A review , 2015 .

[77]  N. Barakat,et al.  A TiO2 nanofiber/activated carbon composite as a novel effective electrode material for capacitive deionization of brackish water , 2014 .

[78]  Choonsoo Kim,et al.  Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques , 2014 .

[79]  Woo-Seung Kim,et al.  Energy minimization in monoethanolamine‐based CO2 capture using capacitive deionization , 2014 .

[80]  Y. Jande,et al.  Modeling the capacitive deionization batch mode operation for desalination , 2014 .

[81]  Ayokunle Omosebi,et al.  Asymmetric electrode configuration for enhanced membrane capacitive deionization. , 2014, ACS applied materials & interfaces.

[82]  Nidal Hilal,et al.  Application of Capacitive Deionisation in water desalination: A review , 2014 .

[83]  P. M. Biesheuvel,et al.  Energy from CO2 using capacitive electrodes--theoretical outline and calculation of open circuit voltage. , 2014, Journal of colloid and interface science.

[84]  Shaoxian Song,et al.  DESALINATION BY CAPACITIVE DEIONIZATION WITH CARBON-BASED MATERIALS AS ELECTRODE: A REVIEW , 2013 .

[85]  Woo-Seung Kim,et al.  Numerical modeling of the vacuum membrane distillation process , 2013 .

[86]  Woo-Seung Kim,et al.  Desalination using capacitive deionization at constant current , 2013 .

[87]  Karel J. Keesman,et al.  Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization , 2013 .

[88]  Zhiyong Tang,et al.  Three‐Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High‐Performance Capacitive Deionization of Saline Water , 2013, Advanced materials.

[89]  Volker Presser,et al.  Review on the science and technology of water desalination by capacitive deionization , 2013 .

[90]  Doron Aurbach,et al.  Long term stability of capacitive de-ionization processes for water desalination: The challenge of positive electrodes corrosion , 2013 .

[91]  Lawrence L. Kazmerski,et al.  Energy Consumption and Water Production Cost of Conventional and Renewable-Energy-Powered Desalination Processes , 2013 .

[92]  Gjergj Dodbiba,et al.  Application of progressive freeze-concentration for desalination , 2013 .

[93]  N. Verma,et al.  Activated carbon from biomass , 2013 .

[94]  Lijun He,et al.  The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite , 2013 .

[95]  Onur N. Demirer,et al.  Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water , 2013 .

[96]  P. M. Biesheuvel,et al.  Optimization of salt adsorption rate in membrane capacitive deionization. , 2013, Water research.

[97]  Linda Zou,et al.  Ion-selective carbon nanotube electrodes in capacitive deionisation , 2013 .

[98]  Gang Wang,et al.  Highly mesoporous activated carbon electrode for capacitive deionization , 2013 .

[99]  M. Antonietti,et al.  “Salt Templating”: A Simple and Sustainable Pathway toward Highly Porous Functional Carbons from Ionic Liquids , 2013, Advanced materials.

[100]  L. Zou,et al.  Using capacitive deionisation for inland brackish groundwater desalination in a remote location , 2013 .

[101]  John H. Lienhard,et al.  Effects of membrane properties on water production cost in small scale membrane distillation systems , 2012 .

[102]  P. M. Biesheuvel,et al.  Energy consumption and constant current operation in membrane capacitive deionization , 2012 .

[103]  Chao Pan,et al.  Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization , 2012 .

[104]  Jae-Hwan Choi,et al.  Application of capacitive deionization (CDI) technology to insulin purification process , 2012 .

[105]  Liyi Shi,et al.  Enhanced capacitive deionization of graphene/mesoporous carbon composites. , 2012, Nanoscale.

[106]  Liyi Shi,et al.  Enhanced capacitive deionization performance of graphene/carbon nanotube composites , 2012 .

[107]  Moonyong Lee,et al.  Energy Consumption in Forward Osmosis Desalination Compared to other Desalination Techniques , 2012 .

[108]  Linda Zou,et al.  A study of the capacitive deionisation performance under various operational conditions. , 2012, Journal of hazardous materials.

[109]  Lili Zhang,et al.  Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors , 2011 .

[110]  F. Kang,et al.  Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes , 2011 .

[111]  C. Tsouris,et al.  Mesoporous carbon for capacitive deionization of saline water. , 2011, Environmental science & technology.

[112]  Seung-Hyeon Moon,et al.  Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). , 2011, Water research.

[113]  J. J. Chew,et al.  Recent advances in biomass pretreatment – Torrefaction fundamentals and technology , 2011 .

[114]  Padma Vasudevan,et al.  Purification of water using vertical multiple effect distillation unit , 2011 .

[115]  P. M. Biesheuvel,et al.  Diffuse charge and Faradaic reactions in porous electrodes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  M. Khayet Membranes and theoretical modeling of membrane distillation: a review. , 2011, Advances in colloid and interface science.

[117]  Lili Wang,et al.  Application studies of activated carbon derived from rice husks produced by chemical-thermal process--a review. , 2011, Advances in colloid and interface science.

[118]  P. M. Biesheuvel,et al.  A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes , 2011 .

[119]  Linda Zou,et al.  Novel graphene-like electrodes for capacitive deionization. , 2010, Environmental science & technology.

[120]  Jae-Hwan Choi,et al.  Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process , 2010 .

[121]  Marc A. Anderson,et al.  Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? , 2010 .

[122]  Seung-Hyeon Moon,et al.  Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. , 2010, Water research.

[123]  Jae-Hwan Choi,et al.  Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application , 2010 .

[124]  P. M. Biesheuvel,et al.  Nonlinear dynamics of capacitive charging and desalination by porous electrodes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[125]  Zhuo Sun,et al.  Electrosorption behavior of graphene in NaCl solutions , 2009 .

[126]  Benny D. Freeman,et al.  Reverse osmosis desalination: water sources, technology, and today's challenges. , 2009, Water research.

[127]  P. M. Biesheuvel,et al.  Thermodynamic cycle analysis for capacitive deionization. , 2009, Journal of colloid and interface science.

[128]  P. M. Biesheuvel,et al.  Dynamic Adsorption/Desorption Process Model for Capacitive Deionization , 2009 .

[129]  Chi-Woo Lee,et al.  Desalination performance of a carbon-based composite electrode , 2009 .

[130]  Zhonghua Zhu,et al.  Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors , 2008 .

[131]  Y. Oren,et al.  Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review) , 2008 .

[132]  Pei Xu,et al.  Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. , 2008, Water research.

[133]  Linda Zou,et al.  Using activated carbon electrode in electrosorptive deionisation of brackish water , 2008 .

[134]  Linda Zou,et al.  Using mesoporous carbon electrodes for brackish water desalination. , 2008, Water research.

[135]  Dazhi Wang,et al.  Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes , 2007 .

[136]  Thomas Melin,et al.  State-of-the-art of reverse osmosis desalination , 2007 .

[137]  Jiří Čermák,et al.  Pore classification in the characterization of porous materials: A perspective , 2007 .

[138]  Sabah A. Abdul-Wahab,et al.  Optimization of multistage flash desalination process by using a two-level factorial design , 2007 .

[139]  S. Prabaharan,et al.  Nanostructured mesoporous carbon as electrodes for supercapacitors , 2006 .

[140]  Amy E. Childress,et al.  Forward osmosis: Principles, applications, and recent developments , 2006 .

[141]  H. Ettouney Design of single-effect mechanical vapor compression , 2006 .

[142]  C. F. Schutte,et al.  Capacitive Deionization Technology™: An alternative desalination solution , 2005 .

[143]  R. C. Bansal,et al.  Activated Carbon Adsorption , 2005 .

[144]  Rubina Bahar,et al.  Performance evaluation of a mechanical vapor compression desalination system , 2004 .

[145]  Costas Tsouris,et al.  Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. , 2002, Journal of colloid and interface science.

[146]  T. D. Tran,et al.  Electrosorption of inorganic salts from aqueous solution using carbon aerogels. , 2002, Environmental science & technology.

[147]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[148]  Sotira Yiacoumi,et al.  Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model , 2001 .

[149]  Osman A. Hamed,et al.  Thermal performance of multi-stage flash distillation plants in Saudi Arabia☆ , 2000 .

[150]  M. Al-Shammiri,et al.  Multi-effect distillation plants: state of the art , 1999 .

[151]  Hisham Ettouney,et al.  Single-Effect Thermal Vapor-Compression Desalination Process: Thermal Analysis , 1999 .

[152]  Hisham Ettouney,et al.  Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps , 1997 .

[153]  K. W. Böddeker,et al.  Two-stage reverse osmosis seawater desalination , 1983 .

[154]  John Newman,et al.  Desalting by Means of Porous Carbon Electrodes , 1971 .

[155]  F. Béguin,et al.  Carbon electrodes for capacitive technologies , 2019, Energy Storage Materials.

[156]  Xia Cao,et al.  Chemically exfoliated MoS2 for capacitive deionization of saline water , 2017 .

[157]  M. Srinivasan,et al.  Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. , 2016 .

[158]  A. M. Dehkhoda Development and characterization of activated biochar as electrode material for capacitive deionization , 2016 .

[159]  Maria-Magdalena Titirici,et al.  Hydrothermal Carbonization of Biomass , 2015 .

[160]  Raya Al-Dadah,et al.  Comparative Analysis of Desalination Technologies , 2014 .

[161]  Khalil Abdelrazek Khalil,et al.  Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process , 2014 .

[162]  Wang Shiping,et al.  Functionalized Graphene/Activated Carbon Composite Electrodes for Asymmetric Capacitive Deionization , 2014 .

[163]  Xin Gao,et al.  Modification of Carbon Xerogel Electrodes for More Efficient Asymmetric Capacitive Deionization , 2013 .

[164]  R. Zhao Theory and operation of capacitive deionization systems , 2013 .

[165]  T. Matsuura,et al.  Chapter 13 – Air Gap Membrane Distillation , 2011 .

[166]  Mohamed Khayet,et al.  Membrane distillation : principles and applications , 2011 .

[167]  J. Čermák,et al.  Pore classification in the characterization of porous materials: A perspective , 2007 .

[168]  H. Oda,et al.  Removal of ionic substances from dilute solution using activated carbon electrodes , 2003 .

[169]  Joseph C. Farmer,et al.  Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes , 1996 .

[170]  G. W. Murphy,et al.  Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area , 1960 .