The age of the grasses and clusters of origins of C4 photosynthesis

At high temperatures and relatively low CO2 concentrations, plants can most efficiently fix carbon to form carbohydrates through C4 photosynthesis rather than through the ancestral and more widespread C3 pathway. Because most C4 plants are grasses, studies of the origin of C4 are intimately tied to studies of the origin of the grasses. We present here a phylogeny of the grass family, based on nuclear and chloroplast genes, and calibrated with six fossils. We find that the earliest origins of C4 likely occurred about 32 million years ago (Ma) in the Oligocene, coinciding with a reduction in global CO2 levels. After the initial appearance of C4 species, photosynthetic pathway changed at least 15 more times; we estimate nine total origins of C4 from C3 ancestors, at least two changes of C4 subtype, and five reversals to C3. We find a cluster of C4 to C3 reversals in the Early Miocene correlating with a drop in global temperatures, and a subsequent cluster of C4 origins in the Mid‐Miocene, correlating with the rise in temperature at the Mid‐Miocene climatic optimum. In the process of dating the origins of C4, we were also able to provide estimated times for other major events in grass evolution. We find that the common ancestor of the grasses (the crown node) originated in the upper Cretaceous. The common ancestor of maize and rice lived at 52 ± 8 Ma.

[1]  James P. Evans The Origin , 2009, Genetics in Medicine.

[2]  M. Chase,et al.  Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. , 2008, Molecular phylogenetics and evolution.

[3]  D. Dilcher,et al.  The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems , 2008, Proceedings of the National Academy of Sciences.

[4]  V. Savolainen,et al.  Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses , 2008, Current Biology.

[5]  C. Osborne Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? , 2007, The Journal of ecology.

[6]  P. Valdes,et al.  Modelling Late Oligocene C4 grasses and climate , 2007 .

[7]  M. Pagani,et al.  The Early Origins of Terrestrial C4 Photosynthesis , 2007 .

[8]  Daniel L Rabosky,et al.  LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies , 2006, Evolutionary bioinformatics online.

[9]  W. Collins,et al.  Global climate projections , 2007 .

[10]  H. L. Miller,et al.  Global climate projections , 2007 .

[11]  E. Kellogg,et al.  Reinstatement and Emendation of Subfamily Micrairoideae (Poaceae) , 2007 .

[12]  L. François,et al.  Atmospheric Carbon Dioxide and Climate Over Phanerozoic Times , 2006 .

[13]  A. Sahni,et al.  Dinosaur Coprolites and the Early Evolution of Grasses and Grazers , 2005, Science.

[14]  C. Strömberg Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Zachos,et al.  Marked Decline in Atmospheric Carbon Dioxide Concentrations During the Paleogene , 2005, Science.

[16]  I. Vlastelic,et al.  Miocene climate change recorded in the chemical and isotopic (Pb, Nd, Hf) signature of Southern Ocean sediments , 2005 .

[17]  H. Kishino,et al.  Bayesian molecular dating using PAML/multidivtime , 2005 .

[18]  K. Bremer,et al.  The age of major monocot groups inferred from 800+ rbcL sequences , 2004 .

[19]  G. Poinar Programinis burmitis gen. et sp. nov., and P. laminatus sp. nov., Early Cretaceous grass-like monocots in Burmese amber , 2004 .

[20]  T. Brutnell,et al.  Structure and Expression of Maize Phytochrome Family Homeologs Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY234825, AY234826, AY234827, AY234828, AY234829, AY234830. , 2004, Genetics.

[21]  R. Sage,et al.  The evolution of C4 photosynthesis. , 2004, The New phytologist.

[22]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[23]  G. Farquhar,et al.  13C discrimination during CO2 assimilation by the terrestrial biosphere , 1994, Oecologia.

[24]  Jaa Nylander,et al.  MrModeltest 2.2. Program Distributed by the Author , 2004 .

[25]  R. Sage The evolution of C 4 photosynthesis , 2003 .

[26]  R. Berner,et al.  CO2 as a Primary Driver of Phanerozoic Climate Change , 2003 .

[27]  W. S. Grayburn,et al.  Complex Transitions between C3 and C4 Photosynthesis during the Evolution of Paniceae: A Phylogenetic Case Study Emphasizing the Position of Steinchisma hians (Poaceae), a C3‐C4 Intermediate , 2003, International Journal of Plant Sciences.

[28]  P. Koch,et al.  Tertiary history of C4 biomass in the Great Plains, USA , 2003 .

[29]  E. Kellogg,et al.  A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. , 2003, American journal of botany.

[30]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .

[31]  Hirohisa Kishino,et al.  Divergence time and evolutionary rate estimation with multilocus data. , 2002, Systematic biology.

[32]  K. Bremer GONDWANAN EVOLUTION OF THE GRASS ALLIANCE OF FAMILIES (POALES) , 2002, Evolution; international journal of organic evolution.

[33]  Brandon S. Gaut,et al.  Evolutionary dynamics of grass genomes , 2002 .

[34]  E. Kellogg,et al.  A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. , 2001, American journal of botany.

[35]  Y. Huang,et al.  Climate Change as the Dominant Control on Glacial-Interglacial Variations in C3 and C4 Plant Abundance , 2001, Science.

[36]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[37]  R. Sage Environmental and Evolutionary Preconditions for the Origin and Diversification of the C4 Photosynthetic Syndrome , 2001 .

[38]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[39]  Jerrold I. Davis,et al.  Phylogeny and subfamilial classification of the grasses (Poaceae) , 2001 .

[40]  J. Huelsenbeck,et al.  MRBAYES : Bayesian inference of phylogeny , 2001 .

[41]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[42]  E. Kellogg,et al.  Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. , 2000, American journal of botany.

[43]  I. Montañez,et al.  A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide , 1999 .

[44]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[45]  Pagani,et al.  Late miocene atmospheric CO(2) concentrations and the expansion of C(4) grasses , 1999, Science.

[46]  Elizabeth A. Kellogg,et al.  12 – Phylogenetic Aspects of the Evolution of C4 Photosynthesis , 1999 .

[47]  R. Monson,et al.  16 – The Taxonomic Distribution of C4 Photosynthesis , 1999 .

[48]  David A. Wedin,et al.  10 – The Biogeography of C4 Photosynthesis: Patterns and Controlling Factors , 1999 .

[49]  L. Jacobs,et al.  The Origin of Grass-Dominated Ecosystems , 1999 .

[50]  J. Ehleringer,et al.  C4 photosynthesis, atmospheric CO2, and climate , 1997, Oecologia.

[51]  J. Ehleringer,et al.  Global vegetation change through the Miocene/Pliocene boundary , 1997, Nature.

[52]  E. Kellogg,et al.  Parallelism and diversity in multiple origins of C4 photosynthesis in the grass family , 1996 .

[53]  S. Mathews,et al.  The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. , 1996, Molecular biology and evolution.

[54]  P. Herendeen The fossil history of the monocotyledons , 1995 .

[55]  B. MacFadden,et al.  Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America , 1994 .

[56]  M. Pagel Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  R. Monson,et al.  Evolutionary and Ecological Aspects of Photosynthetic Pathway Variation , 1993 .

[58]  W. Crepet,et al.  THE EARLIEST REMAINS OF GRASSES IN THE FOSSIL RECORD , 1991 .

[59]  Thure E. Cerling,et al.  Carbon dioxide in the atmosphere; evidence from Cenozoic and Mesozoic Paleosols , 1991 .

[60]  J. Ehleringer,et al.  Climate change and the evolution of C(4) photosynthesis. , 1991, Trends in ecology & evolution.

[61]  J. Doyle,et al.  A rapid DNA isolation procedure for small amounts of fresh leaf tissue , 1987 .

[62]  H. Linder The Evolutionary History of the Poales/Restionales: A Hypothesis , 1987 .

[63]  P. Hattersley,et al.  New Structural/Biochemical Associations in Leaf Blades of C4 Grasses (Poaceae) , 1987 .

[64]  P. Hattersley,et al.  Australian C4 Grasses (Poaceae) - Leaf Blade Anatomical Features in Relation to C-4 Acid Decarboxylation Types , 1987 .

[65]  P. Hattersley,et al.  Photosynthetic Enzyme Activities in the C3-C4 Intermediate Neurachne minor S. T. Blake (Poaceae) , 1986 .

[66]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[67]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[68]  B. N. Smith,et al.  A C4 plant from the Pliocene , 1978, Nature.

[69]  J. R. Thomasson OBSERVATIONS ON THE CHARACTERISTICS OF THE LEMMA AND PALEA OF THE LATE CENOZOIC GRASS PANICUM ELEGANS , 1978 .

[70]  M. Elias,et al.  Tertiary Prairie Grasses and Other Herbs from the High Plains. , 1944 .