University of Groningen Overexpression of Cystathionine gamma-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3 Snijder,

Citation for published version (APA): Snijder, P. M., Baratashvili, M., Grzeschik, N. A., Leuvenink, H. G. D., Kuijpers, L., Huitema, S., Schaap, O., Giepmans, B. N. G., Kuipers, J., Miljkovic, J. L., Mitrovic, A., Bos, E. M., Szabo, C., Kampinga, H. H., Dijkers, P. F., den Dunnen, W. F. A., Filipovic, M. R., van Goor, H., & Sibon, O. C. M. (2015). Overexpression of Cystathionine gamma-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3. Molecular medicine, 21, 758-768. https://doi.org/10.2119/molmed.2015.00221

[1]  Lingyun Wu,et al.  H2S-induced S-sulfhydration of pyruvate carboxylase contributes to gluconeogenesis in liver cells. , 2015, Biochimica et biophysica acta.

[2]  B. Giepmans,et al.  Overexpression of Cystathionine γ-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3 , 2015, Molecular medicine.

[3]  R. Banerjee,et al.  Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. , 2015, Nature chemical biology.

[4]  J. Bian,et al.  Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. , 2014, Antioxidants & redox signaling.

[5]  R. Banerjee,et al.  H2S and its role in redox signaling. , 2014, Biochimica et biophysica acta.

[6]  M. Suematsu,et al.  Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling , 2014, Proceedings of the National Academy of Sciences.

[7]  Paul L Huang,et al.  Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent , 2014, Proceedings of the National Academy of Sciences.

[8]  R. Banerjee,et al.  Enzymology of H2S biogenesis, decay and signaling. , 2014, Antioxidants & redox signaling.

[9]  Xifei Yang,et al.  Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons , 2013, Neurochemistry International.

[10]  Fen Wang,et al.  Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. , 2013, Cellular signalling.

[11]  J. Moser,et al.  Cystathionine γ-lyase protects against renal ischemia/reperfusion by modulating oxidative stress. , 2013, Journal of the American Society of Nephrology : JASN.

[12]  N. Khaper,et al.  Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. , 2013, Antioxidants & redox signaling.

[13]  A. Sparatore,et al.  Therapeutic Effect of Hydrogen Sulfide-Releasing L-Dopa Derivative ACS84 on 6-OHDA-Induced Parkinson’s Disease Rat Model , 2013, PloS one.

[14]  S. Snyder,et al.  Sulfhydration mediates neuroprotective actions of parkin , 2013, Nature Communications.

[15]  Zhi-Sheng Jiang,et al.  Hydrogen Sulfide, the Next Potent Preventive and Therapeutic Agent in Aging and Age-Associated Diseases , 2013, Molecular and Cellular Biology.

[16]  H. Kampinga,et al.  Cellular protein quality control and the evolution of aggregates in spinocerebellar ataxia type 3 (SCA3) , 2012, Neuropathology and applied neurobiology.

[17]  Jianhua Li,et al.  Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in beta-amyloid rat model of Alzheimer’s disease , 2012, Journal of Neuroinflammation.

[18]  R. Montiel,et al.  Patterns of Mitochondrial DNA Damage in Blood and Brain Tissues of a Transgenic Mouse Model of Machado-Joseph Disease , 2012, Neurodegenerative Diseases.

[19]  S. Snyder,et al.  H2S signalling through protein sulfhydration and beyond , 2012, Nature Reviews Molecular Cell Biology.

[20]  U. Rüb,et al.  Brain pathology of spinocerebellar ataxias , 2012, Acta Neuropathologica.

[21]  M. Xian,et al.  Methylsulfonyl benzothiazole (MSBT): a selective protein thiol blocking reagent. , 2012, Organic letters.

[22]  Hongzhu Li,et al.  Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production , 2012, Proceedings of the National Academy of Sciences.

[23]  D. Pappin,et al.  H2S-Induced Sulfhydration of the Phosphatase PTP1B and Its Role in the Endoplasmic Reticulum Stress Response , 2011, Science Signaling.

[24]  N. Bonini,et al.  Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila , 2011, Human molecular genetics.

[25]  R. Banerjee,et al.  Increased transsulfuration mediates longevity and dietary restriction in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[26]  E. Masliah,et al.  Protein aggregate spreading in neurodegenerative diseases: Problems and perspectives , 2011, Neuroscience Research.

[27]  Matt Kaeberlein,et al.  Absence of effects of Sir2 over-expression on lifespan in C. elegans and Drosophila , 2011, Nature.

[28]  M. Kaneki,et al.  Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson's disease. , 2011, Antioxidants & redox signaling.

[29]  F. Frey,et al.  Sodium thiosulfate pharmacokinetics in hemodialysis patients and healthy volunteers. , 2011, Clinical journal of the American Society of Nephrology : CJASN.

[30]  D. Gubb,et al.  Spn1 Regulates the GNBP3-Dependent Toll Signaling Pathway in Drosophila melanogaster , 2011, Molecular and Cellular Biology.

[31]  T. Klockgether,et al.  FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. , 2011, Human molecular genetics.

[32]  H. Derendorf,et al.  Simulation-based sodium thiosulfate dosing strategies for the treatment of calciphylaxis. , 2011, Clinical journal of the American Society of Nephrology : CJASN.

[33]  J. Bian,et al.  Hydrogen sulfide protects amyloid-β induced cell toxicity in microglia. , 2011, Journal of Alzheimer's disease : JAD.

[34]  H. Kampinga,et al.  HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. , 2010, Human molecular genetics.

[35]  H. Kampinga,et al.  Identification of the Drosophila Ortholog of HSPB8 , 2010, The Journal of Biological Chemistry.

[36]  Osamu Onodera,et al.  Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going? , 2010, Journal of molecular cell biology.

[37]  H. Paulson,et al.  Axonal inclusions in spinocerebellar ataxia type 3 , 2010, Acta Neuropathologica.

[38]  J. Bian,et al.  Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models , 2010, Aging cell.

[39]  H. Kampinga,et al.  A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. , 2010, Molecular cell.

[40]  S. Snyder,et al.  H2S Signals Through Protein S-Sulfhydration , 2009, Science Signaling.

[41]  H. van Goor,et al.  Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury. , 2009, Journal of the American Society of Nephrology : JASN.

[42]  R. Banerjee,et al.  Relative Contributions of Cystathionine β-Synthase and γ-Cystathionase to H2S Biogenesis via Alternative Trans-sulfuration Reactions* , 2009, The Journal of Biological Chemistry.

[43]  Dian-Wu Liu,et al.  Hydrogen Sulfide Attenuates Neuronal Injury Induced by Vascular Dementia Via Inhibiting Apoptosis in Rats , 2009, Neurochemical Research.

[44]  游雅君、郭珍菱、鄭文玲、劉青山 、謝明麗 Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease , 2009 .

[45]  S. Tyagi,et al.  Cardioprotective Role of Sodium Thiosulfate on Chronic Heart Failure by Modulating Endogenous H2S Generation , 2008, Pharmacology.

[46]  N. Bonini,et al.  Polyglutamine Genes Interact to Modulate the Severity and Progression of Neurodegeneration in Drosophila , 2008, PLoS biology.

[47]  Dana L. Miller,et al.  Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans , 2007, Proceedings of the National Academy of Sciences.

[48]  Nancy M Bonini,et al.  Genome-Wide Screen for Modifiers of Ataxin-3 Neurodegeneration in Drosophila , 2007, PLoS genetics.

[49]  B. Lemaître,et al.  The host defense of Drosophila melanogaster. , 2007, Annual review of immunology.

[50]  Masaaki Komatsu,et al.  Autophagy and Neurodegeneration , 2006, Autophagy.

[51]  P. Giunti,et al.  Molecular pathogenesis of spinocerebellar ataxias. , 2006, Brain : a journal of neurology.

[52]  Yahong Chen,et al.  Endogenous hydrogen sulfide in patients with COPD. , 2005, Chest.

[53]  Yahong Chen,et al.  [Endogenous hydrogen sulfide in patients with chronic obstructive pulmonary disease]. , 2005, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases.

[54]  M. Salto‐Tellez,et al.  Hydrogen sulfide is a novel mediator of lipopolysaccharide‐induced inflammation in the mouse , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[55]  M. Block,et al.  Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism , 2005, Progress in Neurobiology.

[56]  K. Namekata,et al.  Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. , 2004, The Biochemical journal.

[57]  K. Eto,et al.  A Novel Enhancing Mechanism for Hydrogen Sulfide-producing Activity of Cystathionine β-Synthase* , 2002, The Journal of Biological Chemistry.

[58]  N. Perrimon,et al.  Sequential activation of signaling pathways during innate immune responses in Drosophila. , 2002, Developmental cell.

[59]  K. Eto,et al.  The production of hydrogen sulfide is regulated by testosterone and S‐adenosyl‐l‐methionine in mouse brain , 2002, Journal of neurochemistry.

[60]  H. Kimura Hydrogen sulfide as a neuromodulator , 2002, Molecular Neurobiology.

[61]  T. Klockgether,et al.  Inflammatory Genes Are Upregulated in Expanded Ataxin-3-Expressing Cell Lines and Spinocerebellar Ataxia Type 3 Brains , 2001, The Journal of Neuroscience.

[62]  James F. Gusella,et al.  Molecular genetics: Unmasking polyglutamine triggers in neurodegenerative disease , 2000, Nature Reviews Neuroscience.

[63]  H. Paulson,et al.  Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70 , 1999, Nature Genetics.

[64]  Nancy M Bonini,et al.  Expanded Polyglutamine Protein Forms Nuclear Inclusions and Causes Neural Degeneration in Drosophila , 1998, Cell.

[65]  C. Thummel,et al.  Molecular analysis of the initiation of insect metamorphosis: a comparative study of Drosophila ecdysteroid-regulated transcription. , 1993, Developmental biology.

[66]  M. Xian,et al.  Use of the "tag-switch" method for the detection of protein S-sulfhydration. , 2015, Methods in enzymology.

[67]  Kate S. Carroll,et al.  Detection of protein S-sulfhydration by a tag-switch technique. , 2014, Angewandte Chemie.

[68]  L. Folkes,et al.  Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. , 2011, Free radical biology & medicine.

[69]  O. Sibon,et al.  The role of impaired de novo Coenzyme A biosynthesis in pantothenate kinase-associated neurodegeneration , 2011 .

[70]  T. Klockgether,et al.  FOXO 4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3 , 2011 .

[71]  Y. Goto,et al.  Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. , 2010, Antioxidants & redox signaling.

[72]  J. Kirsch,et al.  The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity. , 2005, Archives of biochemistry and biophysics.

[73]  H. Zoghbi,et al.  Glutamine repeats and neurodegeneration. , 2000, Annual review of neuroscience.

[74]  Y. Goto,et al.  The FASEB Journal express article 10.1096/fj.04-1815fje. Published online May 20, 2004. Hydrogen sulfide protects neurons from oxidative stress , 2022 .