New Method for Dynamic Signature Verification Using Hybrid Partitioning

Dynamic signature is behavioural biometric attribute which is commonly used to identity verification. Methods based on the partitioning are one of the types of methods for identity verification using signature biometric attribute. These methods divide trajectories of the signature into parts and during verification phase compare created fragments of trajectories in each partition. Partitioning is performed on the basis of values of signals describing dynamics of signing process (e.g. pen velocity or pen pressure). In this paper we propose a new method for dynamic signature verification using hybrid partitioning. Partitions in the proposed method can be interpreted as, for example, high velocity in the first phase of the signing process or low pressure in the final phase of the signing process. Our method assumes use of all partitions during classification process and our classifier is based on the flexible neuro-fuzzy system of the Mamdani type. Simulations were performed using public SVC2004 dynamic signature database.

[1]  Marcin Zalasinski,et al.  New Approach for the On-Line Signature Verification Based on Method of Horizontal Partitioning , 2013, ICAISC.

[2]  Ryszard Tadeusiewicz,et al.  Artificial Intelligence and Soft Computing - ICAISC 2006, 8th International Conference, Zakopane, Poland, June 25-29, 2006, Proceedings , 2006, International Conference on Artificial Intelligence and Soft Computing.

[3]  Alfred C. Weaver,et al.  Biometric authentication , 2006, Computer.

[4]  Ryszard Tadeusiewicz,et al.  Application of artificial neural networks and DFT-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase , 2006, J. Comput. Aided Mol. Des..

[5]  Janusz T. Starczewski,et al.  Fully Controllable Ant Colony System for Text Data Clustering , 2012, ICAISC.

[6]  Piotr Duda,et al.  On Fuzzy Clustering of Data Streams with Concept Drift , 2012, ICAISC.

[7]  Janusz T. Starczewski,et al.  New Linguistic Hedges in Construction of Interval Type-2 FLS , 2010, ICAISC.

[8]  A. Kroll On choosing the fuzziness parameter for identifying TS models with multidimensional membership functions , 2011 .

[9]  Lukasz Bartczuk,et al.  A New Version of the Fuzzy-ID3 Algorithm , 2006, ICAISC.

[10]  Marcin Korytkowski,et al.  AdaBoost Ensemble of DCOG Rough-Neuro-Fuzzy Systems , 2011, ICCCI.

[11]  Beatriz Pérez-Sánchez,et al.  Learning from heterogeneously distributed data sets using artificial neural networks and genetic algorithms , 2012, SOCO 2012.

[12]  Lukasz Laskowski Hybrid-Maximum Neural Network for Depth Analysis from Stereo-Image , 2010, ICAISC.

[13]  Leszek Rutkowski,et al.  Flexible Takagi Sugeno Neuro Fuzzy Structures for Nonlinear Approximation , 2005 .

[14]  Piotr Duda,et al.  Decision Trees for Mining Data Streams Based on the Gaussian Approximation , 2014, IEEE Transactions on Knowledge and Data Engineering.

[15]  Saman K. Halgamuge,et al.  Computational Intelligence for Modelling and Prediction , 2005, Studies in Computational Intelligence.

[16]  Venu Govindaraju,et al.  A comparative study on the consistency of features in on-line signature verification , 2005, Pattern Recognit. Lett..

[17]  Leszek Rutkowski,et al.  Novel Online Speed Profile Generation for Industrial Machine Tool Based on Flexible Neuro-Fuzzy Approximation , 2012, IEEE Transactions on Industrial Electronics.

[18]  Arun Ross,et al.  Handbook of Biometrics , 2007 .

[19]  Edward Kacki,et al.  Computers in Medical Activity , 2009 .

[20]  Krzysztof Cpalka A Method for Designing Flexible Neuro-fuzzy Systems , 2006, ICAISC.

[21]  Marcin Korytkowski,et al.  From Ensemble of Fuzzy Classifiers to Single Fuzzy Rule Base Classifier , 2006, ICAISC.

[22]  Krzysztof Patan,et al.  Optimal training strategies for locally recurrent neural networks , 2011 .

[23]  Krystian Lapa,et al.  A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects , 2014, Neurocomputing.

[24]  E. Rafajłowicz,et al.  On optimal global rate of convergence of some nonparametric identification procedures , 1989 .

[25]  Hong Chang,et al.  SVC2004: First International Signature Verification Competition , 2004, ICBA.

[26]  Ryszard Tadeusiewicz,et al.  Approximation of phenol concentration using novel hybrid computational intelligence methods , 2014, Int. J. Appl. Math. Comput. Sci..

[27]  Rafal Scherer,et al.  Connectionist Fuzzy Relational Systems , 2005, Computational Intelligence for Modelling and Prediction.

[28]  Krystian Lapa,et al.  A New Method for Designing and Complexity Reduction of Neuro-fuzzy Systems for Nonlinear Modelling , 2013, ICAISC.

[29]  M. Aurangzeb Khan,et al.  Signature Verification using Velocity-based Directional Filter Bank , 2006, APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems.

[30]  Lukasz Laskowski,et al.  A novel hybrid-maximum neural network in stereo-matching process , 2012, Neural Computing and Applications.

[31]  Solon P. Pissis,et al.  Parallelising the Computation of Minimal Absent Words , 2015, PPAM.

[32]  Krystian Lapa,et al.  A New Approach to Designing Interpretable Models of Dynamic Systems , 2013, ICAISC.

[33]  Robert Nowicki,et al.  Rough Neuro-Fuzzy Structures for Classification With Missing Data , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  Jerzy Jelonkiewicz,et al.  Genetic Algorithm for Observer Parameters Tuning in Sensorless Induction Motor Drive , 2003 .

[35]  Tadeusz M. Szuba,et al.  Computational Collective Intelligence , 2001, Lecture Notes in Computer Science.

[36]  Jacek M. Zurada,et al.  Artificial Intelligence and Soft Computing - ICAISC 2008, 9th International Conference, Zakopane, Poland, June 22-26, 2008, Proceedings , 2008, ICAISC.

[37]  M. Aurangzeb Khan,et al.  Velocity-Image Model for Online Signature Verification , 2006, IEEE Transactions on Image Processing.

[38]  Jerzy Jelonkiewicz,et al.  Accuracy Improvement of Neural Network State Variable Estimator in Induction Motor Drive , 2008, ICAISC.

[39]  Lazaros S. Iliadis,et al.  Artificial Neural Networks - ICANN 2010 - 20th International Conference, Thessaloniki, Greece, September 15-18, 2010, Proceedings, Part I , 2010, International Conference on Artificial Neural Networks.

[40]  Marcin Korytkowski,et al.  On Combining Backpropagation with Boosting , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[41]  Ling Guan,et al.  Velocity and pressure-based partitions of horizontal and vertical trajectories for on-line signature verification , 2010, Pattern Recognit..

[42]  Janusz T. Starczewski,et al.  New Method for Generation Type-2 Fuzzy Partition for FDT , 2010, ICAISC.

[43]  R. Scherer Neuro-fuzzy relational systems for nonlinear approximation and prediction , 2009 .

[44]  Lukasz Laskowski A Novel Continuous Dual Mode Neural Network in Stereo-Matching Process , 2010, ICANN.

[45]  Piotr Dziwiñski,et al.  Algorithm for Generating Fuzzy Rules for WWW Document Classification , 2006, ICAISC.

[46]  Robert Ivor John,et al.  Type-reduction of the discretised interval type-2 fuzzy set: What happens as discretisation becomes finer? , 2011, 2011 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ).

[47]  Piotr Duda,et al.  The CART decision tree for mining data streams , 2014, Inf. Sci..

[48]  Meng Joo Er,et al.  Online Speed Profile Generation for Industrial Machine Tool Based on Neuro-fuzzy Approach , 2010, ICAISC.

[49]  Piotr Dziwiñski,et al.  Ant Focused Crawling Algorithm , 2006, ICAISC.

[50]  Leszek Rutkowski On Bayes Risk Consistent Pattern Recognition Procedures in a Quasi-Stationary Environment , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  X Li,et al.  Fuzzy Regression Modeling for Tool Performance Prediction and Degradation Detection , 2010, Int. J. Neural Syst..

[52]  Janusz T. Starczewski,et al.  A New Method for Dealing with Unbalanced Linguistic Term Set , 2012, ICAISC.

[53]  Piotr Duda,et al.  A New Fuzzy Classifier for Data Streams , 2012, ICAISC.

[54]  Anil K. Jain,et al.  On-line signature verification, , 2002, Pattern Recognit..

[55]  Piotr Duda,et al.  Adaptation of Decision Trees for Handling Concept Drift , 2013, ICAISC.

[56]  Marcin Zalasinski,et al.  Novel Algorithm for the On-Line Signature Verification , 2012, ICAISC.

[57]  Marcin Zalasinski,et al.  On-line signature verification using vertical signature partitioning , 2014, Expert Syst. Appl..

[58]  Danuta Rutkowska,et al.  Medical Diagnosis with Type-2 Fuzzy Decision Trees , 2009 .

[59]  Włodzisław Duch,et al.  Quo vadis, computational intelligence? , 2004 .

[60]  Marcin Korytkowski,et al.  Modular Type-2 Neuro-fuzzy Systems , 2007, PPAM.

[61]  Krzysztof Cpałka,et al.  A new method of on-line signature verification using a flexible fuzzy one-class classifier , 2011 .

[62]  Lukasz Laskowski,et al.  Objects Auto-selection from Stereo-Images Realised by Self-Correcting Neural Network , 2012, ICAISC.

[63]  Piotr Duda,et al.  Decision Trees for Mining Data Streams Based on the McDiarmid's Bound , 2013, IEEE Transactions on Knowledge and Data Engineering.

[64]  Jacek M. Zurada,et al.  Swarm and Evolutionary Computation , 2012, Lecture Notes in Computer Science.

[65]  Piotr Dziwiñski,et al.  Hybrid State Variables - Fuzzy Logic Modelling of Nonlinear Objects , 2013, ICAISC.

[66]  Arun Ross,et al.  An introduction to biometrics , 2008, ICPR 2008.

[67]  L. Rutkowski,et al.  Flexible weighted neuro-fuzzy systems , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[68]  Réjean Plamondon,et al.  Development of a Sigma-Lognormal representation for on-line signatures , 2009, Pattern Recognit..

[69]  Jacek M. Zurada,et al.  Artificial Intelligence and Soft Computing, 10th International Conference, ICAISC 2010, Zakopane, Poland, June 13-17, 2010, Part I , 2010, International Conference on Artificial Intelligence and Soft Computing.

[70]  Olufemi A. Omitaomu,et al.  Weighted dynamic time warping for time series classification , 2011, Pattern Recognit..

[71]  W. Greblicki,et al.  An orthogonal series estimate of time-varying regression , 1983 .