First-principles calculations of circular dichroism of ligand-protected gold nanoparticles

[1]  C. Noguez,et al.  Optically active metal nanoparticles. , 2009, Chemical Society reviews.

[2]  C. Noguez,et al.  Intrinsic Chirality in Bare Gold Nanoclusters: The Au34− Case , 2008 .

[3]  Y. Negishi,et al.  Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. , 2008, Journal of the American Chemical Society.

[4]  X. Zeng,et al.  Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. , 2008, Journal of the American Chemical Society.

[5]  T. Bürgi,et al.  Chiral 1,1'-binaphthyl-2,2'-dithiol-stabilized gold clusters: size separation and optical activity in the UV-vis. , 2008, Chirality.

[6]  M. L. Tiago,et al.  The "staple" motif: a key to stability of thiolate-protected gold nanoclusters. , 2008, Journal of the American Chemical Society.

[7]  H. Yao,et al.  Chiral functionalization of optically inactive monolayer-protected silver nanoclusters by chiral ligand-exchange reactions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[8]  H. Yao Optically Active Gold Nanoclusters , 2008 .

[9]  H. Yao,et al.  Chiroptical Responses of d-/l-Penicillamine-Capped Gold Clusters under Perturbations of Temperature Change and Phase Transfer , 2007 .

[10]  T. Ueda,et al.  Synthesis and Chiroptical Study of D/L-Penicillamine-Capped Silver Nanoclusters , 2007 .

[11]  K. Al‐Shamery,et al.  Formation of alkanethiolate-protected gold clusters with unprecedented core sizes in the thiolation of polymer-stabilized gold clusters , 2007 .

[12]  Thomas Bürgi,et al.  Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared. , 2006, Journal of the American Chemical Society.

[13]  Tatsuya Tsukuda,et al.  Chiroptical activity of BINAP-stabilized undecagold clusters. , 2006, The journal of physical chemistry. B.

[14]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[15]  T. Daniel Crawford,et al.  Ab initio calculation of molecular chiroptical properties , 2006 .

[16]  T. Bürgi,et al.  Vibrational circular dichroism of N-acetyl-l-cysteine protected gold nanoparticles. , 2005, Chemical communications.

[17]  H. Yao,et al.  Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines. , 2005, Journal of the American Chemical Society.

[18]  Bruce A. Garett Molecular Light Scattering and Optical Activity, 2nd ed , 2005 .

[19]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[20]  C. Noguez,et al.  Circular dichroism simulated spectra of chiral gold nanoclusters: A dipole approximation , 2003, cond-mat/0308552.

[21]  J. A. Reyes-Nava,et al.  Chirality, defects, and disorder in gold clusters , 2003 .

[22]  Evert Jan Baerends,et al.  Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules , 2002 .

[23]  J. A. Reyes-Nava,et al.  Chirality in bare and passivated gold nanoclusters , 2002, physics/0203078.

[24]  Soler,et al.  Do thiols merely passivate gold nanoclusters? , 2000, Physical review letters.

[25]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[26]  D. Sánchez-Portal,et al.  Metallic bonding and cluster structure , 2000 .

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  Sievers,et al.  Infrared spectroscopic study of the dressed rotations of CN- isotopes in alkali halide crystals. , 1991, Physical review. B, Condensed matter.