Modified Overlap Technique Using Fermat and Mersenne Transforms

This brief presents a simple and efficient technique for extending the usefulness of Fermat and Mersenne transforms. The constraint on transform length and wordlength is reduced by employing the proposed modified overlap technique, yielding practical architectures for convolution. The proposed technique relies on using transforms of different lengths operating in parallel with output samples time aligned. The brief presents an analysis of the hardware costs of the proposed scheme

[1]  Henri J. Nussbaumer Digital filtering using complex Mersenne transforms , 1976 .

[2]  P. Chevillat Transform-domain digital filtering with number theoretic transforms and limited word lengths , 1978 .

[3]  Eugene I. Bovbel,et al.  The modified number theoretic transform over the direct sum of finite fields to compute the linear convolution , 1998, IEEE Trans. Signal Process..

[4]  Charles M. Rader,et al.  Discrete Convolutions via Mersenne Transrorms , 1972, IEEE Transactions on Computers.

[5]  A. Bouridane,et al.  Diminished-1 multiplier for a fast convolver and correlator using the Fermat number transform , 1988 .

[6]  A. G. J. Holt,et al.  New transform using the Mersenne numbers , 1995 .

[7]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  G. Jullien,et al.  An algorithm for multiplication modulo (2/spl and/N-1) , 1996, Proceedings of the 39th Midwest Symposium on Circuits and Systems.

[9]  H. Nussbaumer Relative evaluation of various number theoretic transforms for digital filtering applications , 1978 .

[10]  Giorgos Dimitrakopoulos,et al.  Efficient diminished-1 modulo 2/sup n/ + 1 multipliers , 2005, IEEE Transactions on Computers.

[11]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[12]  Samuel C. Lee,et al.  A new approach to solve the sequence-length constraint problem in circular convolution using number theoretic transform , 1991, IEEE Trans. Signal Process..

[13]  Hari Krishna Garg,et al.  Digital Signal Processing Algorithms: Number Theory, Convolutions, Fast Fourier Transforms, and Applications , 1998 .

[14]  Mario Bertero,et al.  Advances in Electronics and Electron Physics , 1989 .

[15]  Richard E. Blahut,et al.  Fast Algorithms for Digital Signal Processing , 1985 .

[16]  Akhilesh Tyagi,et al.  A Reduced-Area Scheme for Carry-Select Adders , 1993, IEEE Trans. Computers.

[17]  M. Vanwormhoudt Structural properties of complex residue rings applied to number theoretic Fourier transforms , 1978 .

[18]  Vassil S. Dimitrov,et al.  Generalized Fermat-Mersenne , 1994 .

[19]  Haridimos T. Vergos,et al.  Diminished-One Modulo 2n+1 Adder Design , 2002, IEEE Trans. Computers.

[20]  Neil Weste,et al.  Principles of CMOS VLSI Design , 1985 .

[21]  H. Nussbaumer Digital filtering using pseudo fermat number transforms , 1977 .

[22]  C. Efstathiou,et al.  Modified Booth modulo 2/sup n/-1 multipliers , 2004, IEEE Transactions on Computers.

[23]  C. Burrus,et al.  Fast one-dimensional digital convolution by multidimensional techniques , 1974 .

[24]  Jean-Bernard Martens Number theoretic transforms for the calculation of convolutions , 1983 .

[25]  Trieu-Kien Truong,et al.  The use of finite fields to compute convolutions , 1975, IEEE Trans. Inf. Theory.

[26]  Said Boussakta,et al.  On the application of the Fermat number transforms to the calculation of convolutions and correlations , 1991 .

[27]  L. Leibowitz A simplified binary arithmetic for the Fermat number transform , 1976 .