Modified Overlap Technique Using Fermat and Mersenne Transforms
暂无分享,去创建一个
[1] Henri J. Nussbaumer. Digital filtering using complex Mersenne transforms , 1976 .
[2] P. Chevillat. Transform-domain digital filtering with number theoretic transforms and limited word lengths , 1978 .
[3] Eugene I. Bovbel,et al. The modified number theoretic transform over the direct sum of finite fields to compute the linear convolution , 1998, IEEE Trans. Signal Process..
[4] Charles M. Rader,et al. Discrete Convolutions via Mersenne Transrorms , 1972, IEEE Transactions on Computers.
[5] A. Bouridane,et al. Diminished-1 multiplier for a fast convolver and correlator using the Fermat number transform , 1988 .
[6] A. G. J. Holt,et al. New transform using the Mersenne numbers , 1995 .
[7] C. K. Yuen,et al. Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.
[8] G. Jullien,et al. An algorithm for multiplication modulo (2/spl and/N-1) , 1996, Proceedings of the 39th Midwest Symposium on Circuits and Systems.
[9] H. Nussbaumer. Relative evaluation of various number theoretic transforms for digital filtering applications , 1978 .
[10] Giorgos Dimitrakopoulos,et al. Efficient diminished-1 modulo 2/sup n/ + 1 multipliers , 2005, IEEE Transactions on Computers.
[11] L. Marton,et al. Advances in Electronics and Electron Physics , 1958 .
[12] Samuel C. Lee,et al. A new approach to solve the sequence-length constraint problem in circular convolution using number theoretic transform , 1991, IEEE Trans. Signal Process..
[13] Hari Krishna Garg,et al. Digital Signal Processing Algorithms: Number Theory, Convolutions, Fast Fourier Transforms, and Applications , 1998 .
[14] Mario Bertero,et al. Advances in Electronics and Electron Physics , 1989 .
[15] Richard E. Blahut,et al. Fast Algorithms for Digital Signal Processing , 1985 .
[16] Akhilesh Tyagi,et al. A Reduced-Area Scheme for Carry-Select Adders , 1993, IEEE Trans. Computers.
[17] M. Vanwormhoudt. Structural properties of complex residue rings applied to number theoretic Fourier transforms , 1978 .
[18] Vassil S. Dimitrov,et al. Generalized Fermat-Mersenne , 1994 .
[19] Haridimos T. Vergos,et al. Diminished-One Modulo 2n+1 Adder Design , 2002, IEEE Trans. Computers.
[20] Neil Weste,et al. Principles of CMOS VLSI Design , 1985 .
[21] H. Nussbaumer. Digital filtering using pseudo fermat number transforms , 1977 .
[22] C. Efstathiou,et al. Modified Booth modulo 2/sup n/-1 multipliers , 2004, IEEE Transactions on Computers.
[23] C. Burrus,et al. Fast one-dimensional digital convolution by multidimensional techniques , 1974 .
[24] Jean-Bernard Martens. Number theoretic transforms for the calculation of convolutions , 1983 .
[25] Trieu-Kien Truong,et al. The use of finite fields to compute convolutions , 1975, IEEE Trans. Inf. Theory.
[26] Said Boussakta,et al. On the application of the Fermat number transforms to the calculation of convolutions and correlations , 1991 .
[27] L. Leibowitz. A simplified binary arithmetic for the Fermat number transform , 1976 .