E. coli trp repressor forms a domain-swapped array in aqueous alcohol.

[1]  S. Linse,et al.  Protein reconstitution and 3D domain swapping. , 2002, Current protein & peptide science.

[2]  J. Berger,et al.  The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation , 2002, The EMBO journal.

[3]  J. Carey,et al.  Three-dimensional solution NMR structure of Apo-L75F-TrpR, a temperature-sensitive mutant of the tryptophan repressor protein. , 2002, Biochemistry.

[4]  Ž. Eva Amyloid-fibril formation: Proposed mechanisms and relevance to conformational disease , 2002 .

[5]  David Eisenberg,et al.  3D domain swapping: As domains continue to swap , 2002, Protein science : a publication of the Protein Society.

[6]  D. Eisenberg,et al.  Structures of the two 3D domain‐swapped RNase A trimers , 2002, Protein science : a publication of the Protein Society.

[7]  M. Newcomer,et al.  Protein folding and three-dimensional domain swapping: astrained relationship? , 2002 .

[8]  D. Ringe,et al.  Proteins in organic solvents. , 2001, Current opinion in structural biology.

[9]  P. Taylor,et al.  Two structures of cyclophilin 40: folding and fidelity in the TPR domains. , 2001, Structure.

[10]  D. Rees,et al.  Crystal Structure of the “cab”-type β Class Carbonic Anhydrase from the Archaeon Methanobacterium thermoautotrophicum * , 2001, The Journal of Biological Chemistry.

[11]  D. J. Douglas,et al.  The methanol-induced conformational transitions of β-lactoglobulin, cytochrome c, and ubiquitin at low pH: A study by electrospray ionization mass spectrometry , 2001, Journal of the American Society for Mass Spectrometry.

[12]  R E Hubbard,et al.  Locating interaction sites on proteins: The crystal structure of thermolysin soaked in 2% to 100% isopropanol , 1999, Proteins.

[13]  J. Markley,et al.  Oligomerization of the EK18 mutant of the trp repressor of Escherichia coli as observed by NMR spectroscopy. , 1999, Archives of biochemistry and biophysics.

[14]  Charles C. Richardson,et al.  Crystal Structure of the Helicase Domain from the Replicative Helicase-Primase of Bacteriophage T7 , 1999, Cell.

[15]  D. Covell,et al.  Cooperative folding units of escherichia coli tryptophan repressor. , 1999, Biophysical journal.

[16]  A. Gronenborn,et al.  Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping. , 1999, Journal of molecular biology.

[17]  R. Read,et al.  The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. , 1999, Structure.

[18]  J. Carey,et al.  Long-range effects on dynamics in a temperature-sensitive mutant of trp repressor. , 1999, Journal of molecular biology.

[19]  M. Buck,et al.  Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins , 1998, Quarterly Reviews of Biophysics.

[20]  D I Svergun,et al.  Protein hydration in solution: experimental observation by x-ray and neutron scattering. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. McDermott,et al.  Mutational analysis of the NH2‐terminal arms of the trp repressor indicates a multifunctional domain , 1998, Molecular microbiology.

[22]  R. Read,et al.  Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Sarma Rh,et al.  Biological Structure and Dynamics. , 1996, Journal of biomolecular structure & dynamics.

[24]  L. S. Klig,et al.  Flexibility of dna binding domain of trp repressor required for recognition of different operator sequences , 1996, Protein science : a publication of the Protein Society.

[25]  D Eisenberg,et al.  3D domain swapping: A mechanism for oligomer assembly , 1995, Protein science : a publication of the Protein Society.

[26]  C. Lawson Structural consequences of two methyl additions in the E. coli trp repressor L-tryptophan binding pocket , 1995 .

[27]  J. Lee,et al.  Electrostatic forces contribute to interactions between trp repressor dimers. , 1994, Biophysical journal.

[28]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[29]  C. Lawson,et al.  Cocrystals of Escherichia coli trp repressor bound to an alternative operator DNA sequence. , 1993, Journal of molecular biology.

[30]  C. Lawson,et al.  Tandem binding in crystals of a trp represser/operator half-site complex , 1993, Nature.

[31]  J Yang,et al.  Thermodynamics of ligand binding to trp repressor. , 1993, Biochemistry.

[32]  C. Yanofsky,et al.  Analysis of heterodimer formation by the Escherichia coli trp repressor. , 1993, The Journal of biological chemistry.

[33]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[34]  O Jardetzky,et al.  Refined solution structures of the Escherichia coli trp holo- and aporepressor. , 1993, Journal of molecular biology.

[35]  C. Royer,et al.  Role of protein--protein interactions in the regulation of transcription by trp repressor investigated by fluorescence spectroscopy. , 1992, Biochemistry.

[36]  M. L. Tasayco,et al.  Ordered self-assembly of polypeptide fragments to form nativelike dimeric trp repressor. , 1992, Science.

[37]  Irene T. Weber,et al.  The structure of the E. coli recA protein monomer and polymer , 1992, Nature.

[38]  Sung-Hou Kim,et al.  Sparse matrix sampling: a screening method for crystallization of proteins , 1991 .

[39]  J. Carey trp repressor arms contribute binding energy without occupying unique locations on DNA. , 1989, The Journal of biological chemistry.

[40]  A. Joachimiak,et al.  The crystal structure of trp aporepressor at 1.8 Å shows how binding tryptophan enhances DNA affinity , 1987, Nature.

[41]  C. Yanofsky,et al.  Functional inferences from crystals of Escherichia coli trp repressor. , 1983, The Journal of biological chemistry.

[42]  C. Yanofsky,et al.  Purification and characterization of trp aporepressor. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Newcomer,et al.  Protein folding and three-dimensional domain swapping: a strained relationship? , 2002, Current opinion in structural biology.

[44]  E. Žerovnik,et al.  Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. , 2002, European journal of biochemistry.

[45]  M. Jaskólski,et al.  3D domain swapping, protein oligomerization, and amyloid formation. , 2001, Acta biochimica Polonica.

[46]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[47]  S J Wodak,et al.  SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. , 1999, Acta crystallographica. Section D, Biological crystallography.

[48]  D Eisenberg,et al.  Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. , 1997, Advances in protein chemistry.

[49]  D Szwajkajzer,et al.  Molecular and biological constraints on ligand-binding affinity and specificity. , 1997, Biopolymers.

[50]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[51]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[52]  Z Otwinowski,et al.  Flexibility of the DNA‐binding domains of trp repressor , 1988, Proteins.

[53]  C. Yanofsky,et al.  Formation of heterodimers between wild type and mutant trp aporepressor polypeptides of Escherichia coli , 1988, Proteins.

[54]  A. Joachimiak,et al.  Crystal structure of trp represser/operator complex at atomic resolution , 1988, Nature.

[55]  Catherine L. Lawson,et al.  The three-dimensional structure of trp repressor , 1985, Nature.