Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter.

We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ∼89  kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

[1]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[2]  T. Xu,et al.  Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. , 2017, ACS nano.

[3]  Haibo Zeng,et al.  Solution‐Processed Low Threshold Vertical Cavity Surface Emitting Lasers from All‐Inorganic Perovskite Nanocrystals , 2017 .

[4]  M. Grätzel,et al.  Photovoltaic and Amplified Spontaneous Emission Studies of High‐Quality Formamidinium Lead Bromide Perovskite Films , 2016 .

[5]  H. Zeng,et al.  All‐Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics , 2015, Advanced materials.

[6]  C. Carbonaro,et al.  Can Trihalide Lead Perovskites Support Continuous Wave Lasing? , 2015 .

[7]  S. Shaari,et al.  Optimization of electro-optical characteristics of GaAs-based oxide confinement VCSEL , 2010 .

[8]  Yang Yang,et al.  Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications. , 2016, The journal of physical chemistry letters.

[9]  Z. Vardeny,et al.  Enhanced emissive and lasing characteristics of nano-crystalline MAPbBr3 films grown via anti-solvent precipitation , 2016 .

[10]  Lain-Jong Li,et al.  Heterostructured WS2/CH3NH3PbI3 Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity , 2016, Advanced materials.

[11]  Zach DeVito,et al.  Opt , 2017 .

[12]  E. Namdas,et al.  How to recognize lasing , 2009 .

[13]  Manas R. Parida,et al.  Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. , 2015, The journal of physical chemistry letters.

[14]  H. Yanagi,et al.  Optically pumped lasing in single crystals of organometal halide perovskites prepared by cast-capping method , 2016 .

[15]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016, Advanced materials.

[16]  Qing Liao,et al.  Perovskite Microdisk Microlasers Self‐Assembled from Solution , 2015, Advanced materials.

[17]  Kenneth E. Goodson,et al.  Thermal conductivity measurement of amorphous dielectric multilayers for phase-change memory power reduction , 2016 .

[18]  Shuai Liu,et al.  Two‐Photon Pumped CH3NH3PbBr3 Perovskite Microwire Lasers , 2016 .

[19]  Tien Khee Ng,et al.  The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites , 2015 .

[20]  Felix Deschler,et al.  Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing , 2016 .

[21]  Endre Horváth,et al.  Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. , 2014, The journal of physical chemistry letters.

[22]  T. R. Gosnell,et al.  Compact Blue-Green Lasers: Frontmatter , 2003 .

[23]  E. Waks,et al.  Overcoming Auger recombination in nanocrystal quantum dot laser using spontaneous emission enhancement. , 2014, Optics express.

[24]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[25]  Jay B. Patel,et al.  Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. , 2015, Nano letters.

[26]  Tien Khee Ng,et al.  Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications , 2015 .

[27]  Alain Goriely,et al.  Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance. , 2017, The journal of physical chemistry letters.

[28]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[29]  Z. Ye,et al.  Simple Approach to Improving the Amplified Spontaneous Emission Properties of Perovskite Films. , 2016, ACS applied materials & interfaces.

[30]  Nan Zhang,et al.  High-Density and Uniform Lead Halide Perovskite Nanolaser Array on Silicon. , 2016, The journal of physical chemistry letters.

[31]  Alyssa N. Brigeman,et al.  Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator. , 2016, Nano letters.

[32]  Tien Khee Ng,et al.  Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry. , 2016, Optics express.

[33]  Masahiro Adachi,et al.  InGaN based green laser diodes on semipolar GaN substrate , 2014 .

[34]  S. M. Mitani,et al.  On the characterization of a new type of oxide-confined 850 nm GaAs-based vertical-cavity surface-emitting laser , 2008 .

[35]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[36]  H. Tuller,et al.  The electrical conductivity of thin film donor doped hematite: from insulator to semiconductor by defect modulation. , 2014, Physical chemistry chemical physics : PCCP.

[37]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[38]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[39]  Chung-En Zah,et al.  Gallium Indium Nitride-Based Green Lasers , 2012, Journal of Lightwave Technology.

[40]  Bin Su,et al.  “Liquid Knife” to Fabricate Patterning Single‐Crystalline Perovskite Microplates toward High‐Performance Laser Arrays , 2016, Advanced materials.

[41]  S. Denbaars,et al.  Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays , 2013 .

[42]  A. Nurmikko,et al.  High‐Q, Low‐Threshold Monolithic Perovskite Thin‐Film Vertical‐Cavity Lasers , 2017, Advanced materials.

[43]  K. Iga,et al.  Surface-emitting laser-its birth and generation of new optoelectronics field , 2000, IEEE Journal of Selected Topics in Quantum Electronics.