Framelets: MRA-based constructions of wavelet frames☆☆☆
暂无分享,去创建一个
I. Daubechies | A. Ron | Zuowei Shen | B. Han
[1] Charles A. Micchelli,et al. Using the refinement equation for the construction of pre-wavelets , 1991, Numerical Algorithms.
[2] B. Han,et al. Pairs of Dual Wavelet Frames from Any Two Refinable Functions , 2004 .
[3] Petukhov,et al. Constructive Approximation Symmetric Framelets , 2003 .
[4] A. Petukhov. Explicit Construction of Framelets , 2001 .
[5] I. Selesnick. Smooth Wavelet Tight Frames with Zero Moments , 2001 .
[6] L. Debnath. Wavelet Transforms and Time-Frequency Signal Analysis , 2001 .
[7] John J. Benedetto,et al. Wavelet Frames: Multiresolution Analysis and Extension Principles , 2001 .
[8] C. Chui,et al. Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .
[9] Gerlind Plonka-Hoch,et al. A new factorization technique of the matrix mask of univariate refinable functions , 2001, Numerische Mathematik.
[10] Alexander Petukhov. Symmetric Framelets (Preprint) , 2000 .
[11] Marcin Bownik. A Characterization of Affine Dual Frames in L2(Rn) , 2000 .
[12] C. Chui,et al. Compactly supported tight frames associated with refinable functions , 2000 .
[13] K. Lau. Advances in wavelets , 1999 .
[14] J. Benedetto,et al. The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .
[15] G. Greuel,et al. SINGULAR version 1.2 User Manual , 1998 .
[16] Charles K. Chui,et al. Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..
[17] Zuowei Shen,et al. Construction of Compactly Supported Affine Frames in , 1998 .
[18] Zuowei Shen,et al. Compactly supported tight affine spline frames in L2(Rd) , 1998, Math. Comput..
[19] A. Ron,et al. Tight compactly supported wavelet frames of arbitrarily high smoothness , 1998 .
[20] A. Ron,et al. Affine systems inL2 (ℝd) II: Dual systems , 1997 .
[21] A. Ron,et al. Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .
[22] G. Plonka. Approximation order provided by refinable function vectors , 1997 .
[23] G. Weiss,et al. A characterization of functions that generate wavelet and related expansion , 1997 .
[24] G. Weiss,et al. A First Course on Wavelets , 1996 .
[25] George C. Donovan,et al. Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .
[26] Ding-Xuan Zhou,et al. Order of linear approximation from shift-invariant spaces , 1995 .
[27] A. Ron,et al. Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.
[28] Zuowei Shen,et al. Gramian Analysis of Affine Bases and Affine Frames. , 1995 .
[29] B. Han. On Dual Wavelet Tight Frames , 1995 .
[30] Zuowei Shen. Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .
[31] Wayne Lawton,et al. Characterization of compactly supported refinable splines , 1995, Adv. Comput. Math..
[32] D. Hardin,et al. Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .
[33] R. DeVore,et al. Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .
[34] R. DeVore,et al. Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .
[35] Charles K. Chui,et al. Bessel Sequences and Affine Frames , 1993 .
[36] R. DeVore,et al. On the construction of multivariate (pre)wavelets , 1993 .
[37] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[38] Amos Ron,et al. The Exponentials in the Span of the Multiinteger Translates of a Compactly Supported Function; Quasiinterpolation and Approximation Order , 1992 .
[39] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[40] C. Chui,et al. On compactly supported spline wavelets and a duality principle , 1992 .
[41] R. DeVore,et al. The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .
[42] Ronald A. DeVore,et al. The Structure of Nitely Generated Shift-invariant Spaces in L 2 (ir D ) , 1992 .
[43] Charles A. Micchelli,et al. Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.
[44] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[45] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[46] G. Battle. A block spin construction of ondelettes Part II: The QFT connection , 1988 .
[47] P. G. Lemari'e,et al. Ondelettes `a localisation exponentielle , 1988 .
[48] G. Battle. A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .
[49] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[50] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .