Framelets: MRA-based constructions of wavelet frames☆☆☆

[1]  Charles A. Micchelli,et al.  Using the refinement equation for the construction of pre-wavelets , 1991, Numerical Algorithms.

[2]  B. Han,et al.  Pairs of Dual Wavelet Frames from Any Two Refinable Functions , 2004 .

[3]  Petukhov,et al.  Constructive Approximation Symmetric Framelets , 2003 .

[4]  A. Petukhov Explicit Construction of Framelets , 2001 .

[5]  I. Selesnick Smooth Wavelet Tight Frames with Zero Moments , 2001 .

[6]  L. Debnath Wavelet Transforms and Time-Frequency Signal Analysis , 2001 .

[7]  John J. Benedetto,et al.  Wavelet Frames: Multiresolution Analysis and Extension Principles , 2001 .

[8]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[9]  Gerlind Plonka-Hoch,et al.  A new factorization technique of the matrix mask of univariate refinable functions , 2001, Numerische Mathematik.

[10]  Alexander Petukhov Symmetric Framelets (Preprint) , 2000 .

[11]  Marcin Bownik A Characterization of Affine Dual Frames in L2(Rn) , 2000 .

[12]  C. Chui,et al.  Compactly supported tight frames associated with refinable functions , 2000 .

[13]  K. Lau Advances in wavelets , 1999 .

[14]  J. Benedetto,et al.  The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .

[15]  G. Greuel,et al.  SINGULAR version 1.2 User Manual , 1998 .

[16]  Charles K. Chui,et al.  Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..

[17]  Zuowei Shen,et al.  Construction of Compactly Supported Affine Frames in , 1998 .

[18]  Zuowei Shen,et al.  Compactly supported tight affine spline frames in L2(Rd) , 1998, Math. Comput..

[19]  A. Ron,et al.  Tight compactly supported wavelet frames of arbitrarily high smoothness , 1998 .

[20]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[21]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[22]  G. Plonka Approximation order provided by refinable function vectors , 1997 .

[23]  G. Weiss,et al.  A characterization of functions that generate wavelet and related expansion , 1997 .

[24]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[25]  George C. Donovan,et al.  Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .

[26]  Ding-Xuan Zhou,et al.  Order of linear approximation from shift-invariant spaces , 1995 .

[27]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[28]  Zuowei Shen,et al.  Gramian Analysis of Affine Bases and Affine Frames. , 1995 .

[29]  B. Han On Dual Wavelet Tight Frames , 1995 .

[30]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[31]  Wayne Lawton,et al.  Characterization of compactly supported refinable splines , 1995, Adv. Comput. Math..

[32]  D. Hardin,et al.  Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .

[33]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[34]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .

[35]  Charles K. Chui,et al.  Bessel Sequences and Affine Frames , 1993 .

[36]  R. DeVore,et al.  On the construction of multivariate (pre)wavelets , 1993 .

[37]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[38]  Amos Ron,et al.  The Exponentials in the Span of the Multiinteger Translates of a Compactly Supported Function; Quasiinterpolation and Approximation Order , 1992 .

[39]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[40]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[41]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[42]  Ronald A. DeVore,et al.  The Structure of Nitely Generated Shift-invariant Spaces in L 2 (ir D ) , 1992 .

[43]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[44]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[45]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[46]  G. Battle A block spin construction of ondelettes Part II: The QFT connection , 1988 .

[47]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[48]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[49]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[50]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .