Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral bodies: a cause of disc failure?

RésuméLe but de cette recherche a été de confirmer l'hypothèse selon laquelle l'altération d'un corps vertébral peut créer une concentration anormale des contraintes dans les disques intervertébraux adjacents. 23 segments mobiles cadavériques prélevés sur des sujets de 19 à 87 ans, ont été soumis à une charge importante, en position dite neutre, en extension et en flexion. Pendant la phase de mise en charge, un capteur de pression miniaturisé, placé dans de disque, le long de son diamètre sagittal médian, a permis d'obtenir les courbes des contraintes de compression horizontale et verticale; les mesures ont été répétées après que chaque segment mobile a été comprimé jusqu'au point de rupture mécanique: les corps vertébraux ont présenté alors des altérations mineures au niveau des travées spongieuses et parfois des plateaux, mais leur structure est restée intacte et la hauteur du segment mobile ne s'est réduite que de 1 à 2%. Après le traumatisme, les contraintes ont chuté d'environ 30% dans le nucléus et la partie antérieure de l'annulus, et des pics de contrainte élevés sont apparus dans les couches profondes de la partie postérieure de l'annulus. Ces modifications ont été plus importantes en extension et moins prononcées en flexion. Les disques les plus jeunes ont présenté les modifications les plus discrètes. En conclusion, les tassements mineurs du corps vertébral peuvent conduire à des concentrations de contraintes très élevées dans la partie postérieure de l'annulus. Le corps vertébral étant le point faible du rachis lombaire, son altération peut être considérée comme une cause fréquente de faillite discale.SummaryThe purpose of this investigation was to test the hypothesis that damage to a lumbar vertebral body can lead to abnormal stress concentrations in the adjacent intervertebral discs. Twenty-three cadaveric lumbar “motion segments”, from persons who had died aged between 19 and 87 years, were subjected to substantial compressive loading while in the neutral, lordotic and flexed “postures”. During the loading period, a miniature pressure transducer was pulled through the disc along its mid-sagittal diameter and graphs of horizontal and vertical compressive stress against distance were obtained. Measurements were repeated after each motion segment had been compressed up to the point of mechanical failure: at this point the vertebral bodies suffered minor damage to the trabecular arcades, and sometimes to the end-plate, but the structure remained essentially intact and motion segment height was reduced by only 1%–2%. After damage, the stress in the nucleus and anterior annulus fell by about 30%, and high stress peaks appeared in the inner posterior annulus. These changes were more pronounced in lordotic posture and less pronounced in flexion. The youngest discs showed the smallest changes. It is concluded that minor compressive damage to the vertebral body can lead to high stress concentrations in the posterior annulus. Since the vertebral body is the “weak link” of the lumbar spine, this may be a frequent precipitating cause of isolated disc failure in living people.

[1]  P. J. Gillespie,et al.  Effect of immobilization on retention of 90Y. , 1973, Annals of the rheumatic diseases.

[2]  A. Nachemson,et al.  In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. , 1970, Acta orthopaedica Scandinavica.

[3]  A Shirazi-Adl,et al.  Strain in Fibers of a Lumbar Disc: Analysis of the Role of Lifting in Producing Disc Prolapse , 1989, Spine.

[4]  P Brinckmann,et al.  Fatigue fracture of human lumbar vertebrae. , 1987, Clinical biomechanics.

[5]  O. Perey,et al.  Fracture of the vertebral end-plate in the lumbar spine; an experimental biochemical investigation. , 1957, Acta orthopaedica Scandinavica. Supplementum.

[6]  M. Hellström,et al.  Disc Degeneration and Associated Abnormalities of the Spine in Elite Gymnasts: A Magnetic Resonance Imaging Study , 1991, Spine.

[7]  H. V. Crock The Presidential Address: ISSLS: Internal Disc Disruption A Challenge to Disc Prolapse Fifty Years On , 1986, Spine.

[8]  P Brinckmann,et al.  Prediction of the compressive strength of human lumbar vertebrae. , 1989, Clinical biomechanics.

[9]  K. Markolf,et al.  The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. , 1974, The Journal of bone and joint surgery. American volume.

[10]  M H Krag,et al.  Internal deformations of intact and denucleated human lumbar discs subjected to compression, flexion, and extension loads , 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[11]  J. Galante Tensile properties of the human lumbar annulus fibrosus. , 1967, Acta orthopaedica Scandinavica.

[12]  M. Adams,et al.  Gradual Disc Prolapse , 1985, Spine.

[13]  King H. Yang,et al.  Mechanism of facet load transmission as a hypothesis for low-back pain. , 1984, Spine.

[14]  Adams Ma,et al.  Prolapsed Intervertebral Disc: A Hyperflexion Injury , 1982 .

[15]  T. Hansson,et al.  The Amount of Bone Mineral and Schmorl's Nodes in Lumbar Vertebrae , 1983, Spine.

[16]  M. Adams,et al.  Can the Lumbar Spine Be Crushed in Heavy Lifting? , 1982, Spine.

[17]  B. Vernon‐roberts,et al.  1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. , 1990 .

[18]  T. Hansson,et al.  The Bone Mineral Content and Ultimate Compressive Strength of Lumbar Vertebrae , 1980, Spine.

[19]  W C Hutton,et al.  The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. , 1980, The Journal of bone and joint surgery. British volume.

[20]  W C Hutton,et al.  Disc space narrowing and the lumbar facet joints. , 1984, The Journal of bone and joint surgery. British volume.

[21]  King H. Yang,et al.  Mechanism of Disc Rupture: A Preliminary Report , 1991, Spine.

[22]  W. H. Fahrni,et al.  Age changes in lumbar intervertebral discs. , 1970, Canadian journal of surgery. Journal canadien de chirurgie.

[23]  P Brinckmann,et al.  Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. , 1991, Spine.

[24]  A. Nachemson Disc Pressure Measurements , 1981, Spine.

[25]  Nikolai Bogduk,et al.  Clinical Anatomy of the Lumbar Spine , 1987 .

[26]  M. Adams,et al.  A technique for quantifying the bending moment acting on the lumbar spine in vivo. , 1991, Journal of biomechanics.

[27]  E. Makino,et al.  Histological development of intervertebral disc herniation. , 1986, The Journal of bone and joint surgery. American volume.

[28]  Fahrni Wh,et al.  Age changes in lumbar intervertebral discs. , 1970 .

[29]  Michael A. Adams,et al.  Posture and the compressive strength of the lumbar spine , 1994 .

[30]  R. Fraser,et al.  Annulus tears and intervertebral disc degeneration : an experimental study using an animal model , 1990 .

[31]  B. Vernon‐roberts,et al.  Healing trabecular microfractures in the bodies of lumbar vertebrae. , 1973, Annals of the rheumatic diseases.

[32]  Y. K. Liu,et al.  Fatigue Response of Lumbar Intervertebral Joints Under Axial Cyclic Loading , 1983, Spine.

[33]  M. Adams,et al.  Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry , 1992, Spine.

[34]  T Hansson,et al.  Mineral content and strength of lumbar vertebrae. A cadaver study. , 1989, Acta orthopaedica Scandinavica.

[35]  R. Benn,et al.  Vertebral end-plate lesions (Schmorl's nodes) in the dorsolumbar spine. , 1976, Annals of the rheumatic diseases.

[36]  Helen Muir,et al.  Proteoglycans in Experimental Intervertebral Disc Degeneration , 1981 .

[37]  M. Adams,et al.  The effect of fatigue on the lumbar intervertebral disc. , 1983, The Journal of bone and joint surgery. British volume.

[38]  Paul Brinckmann,et al.  The influence of vertebral body fracture, intradiscal injection and partial discectomy on the radial bulge and height of human lumbar discs , 1985 .

[39]  W. Hutton,et al.  The Lumbar Spine in Backward Bending , 1988, Spine.

[40]  L. Swärd,et al.  Back Pain and Radiologic Changes in the Thoraco-Lumbar Spine of Athletes , 1990, Spine.

[41]  P. Dolan,et al.  Commonly Adopted Postures and Their Effect on the Lumbar Spine , 1988, Spine.