The Semigeostrophic Equations Discretized in Reference and Dual Variables

We study the evolution of a system of n particles $${\{(x_i, v_i)\}_{i=1}^{n}}$$ in $${\mathbb{R}^{2d}}$$ . That system is a conservative system with a Hamiltonian of the form $${H[\mu]=W^{2}_{2}(\mu, \nu^{n})}$$ , where W2 is the Wasserstein distance and μ is a discrete measure concentrated on the set $${\{(x_i, v_i)\}_{i=1}^{n}}$$ . Typically, μ(0) is a discrete measure approximating an initial L∞ density and can be chosen randomly. When d  =  1, our results prove convergence of the discrete system to a variant of the semigeostrophic equations. We obtain that the limiting densities are absolutely continuous with respect to the Lebesgue measure. When $${\{\nu^n\}_{n=1}^\infty}$$ converges to a measure concentrated on a special d–dimensional set, we obtain the Vlasov–Monge–Ampère (VMA) system. When, d = 1 the VMA system coincides with the standard Vlasov–Poisson system.

[1]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[2]  H. Aref INTEGRABLE, CHAOTIC, AND TURBULENT VORTEX MOTION IN TWO-DIMENSIONAL FLOWS , 1983 .

[3]  Gr'egoire Loeper,et al.  Quasi-Neutral Limit of the Euler–Poisson and Euler–Monge–Ampère Systems , 2005, math/0504134.

[4]  A Geometric approximation to the euler equations: the Vlasov–Monge–Ampère system , 2004, math/0504135.

[5]  Yann Brenier,et al.  Weak Existence for the Semigeostrophic Equations Formulated as a Coupled Monge-Ampère/Transport Problem , 1998, SIAM J. Appl. Math..

[6]  Y. Brenier,et al.  convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .

[7]  M. Cullen,et al.  Properties of the Lagrangian Semigeostrophic Equations , 1989 .

[8]  Pierre-Louis Lions,et al.  Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .

[9]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[10]  Y. Brenier Derivation of the Euler Equations¶from a Caricature of Coulomb Interaction , 2000 .

[11]  J. Norbury,et al.  A Hamiltonian structure with contact geometry for the semi-geostrophic equations , 1994, Journal of Fluid Mechanics.

[12]  L. Ambrosio Transport equation and Cauchy problem for BV vector fields , 2004 .

[13]  W. Gangbo,et al.  A Variational Approach for the 2-Dimensional Semi-Geostrophic Shallow Water Equations , 2001 .

[14]  Brian J. Hoskins,et al.  The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations. , 1975 .

[15]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .

[16]  W. Gangbo,et al.  Constrained steepest descent in the 2-Wasserstein metric , 2003, math/0312063.

[17]  M. Cullen,et al.  An Extended Lagrangian Theory of Semi-Geostrophic Frontogenesis , 1984 .