MAPS: multiresolution adaptive parameterization of surfaces

An irregular connectivity mesh representative of a surface having an arbitrary topology is processed to generate a parameterization which maps points in a coarse base domain to points in the mesh. An illustrative embodiment uses a multi-level mesh simplification process in conjunction with conformal mapping to efficiently construct a parameterization of a mesh comprising a large number of triangles over a base domain comprising a smaller number of triangles. The parameterization in this embodiment corresponds to the inverse of function mapping each point in the original mesh to one of the triangles of the base domain, such that the original mesh can be reconstructed from the base domain and the parameterization. The mapping function is generated as a combination of a number of sub-functions, each of which relates data points in a mesh of one level in a simplification hierarchy to data points in a mesh of the next coarser level of the simplification hierarchy. The parameterization can also be used to construct, from the original irregular connectivity mesh, an adaptive remesh having a regular connectivity which is substantially easier to process than the original mesh.

[1]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[2]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[3]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[4]  Dinesh Manocha,et al.  Simplifying polygonal models using successive mappings , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[5]  Jean Schweitzer,et al.  Analysis and application of subdivision surfaces , 1996 .

[6]  Tony DeRose,et al.  Vertex-Based Delaunay Triangulation Of Meshes Of Arbitrary Topological Type , 1997 .

[7]  David G. Kirkpatrick,et al.  A Linear Algorithm for Determining the Separation of Convex Polyhedra , 1985, J. Algorithms.

[8]  J. Canales,et al.  An adaptive mesh refinement procedure for shape optimal design , 1993 .

[9]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[10]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[11]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[12]  D. Zorin Stationary Subdivision and Multiresolution Surface Representations , 1997 .

[13]  E. Mucke Shapes and implementations in three-dimensional geometry , 1993 .

[14]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[15]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[16]  W. Stuetzle,et al.  HIERARCHICAL COMPUTATION OF PL HARMONIC EMBEDDINGS , 1997 .

[17]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[18]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[19]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[20]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[21]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[22]  R. Ho Algebraic Topology , 2022 .

[23]  Peter J.C. Brown,et al.  A robust efficient algorithm for point location in triangulations , 1997 .

[24]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[25]  Jindong Chen,et al.  Automatic Reconstruction of 3D CAD Models from Digital Scans , 1999, Int. J. Comput. Geom. Appl..

[26]  David Salesin,et al.  Interactive multiresolution surface viewing , 1996, SIGGRAPH.

[27]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[29]  M. Garland,et al.  Fast Polygonal Approximation of Terrains and Height Fields , 1998 .

[30]  Matthias Eck,et al.  Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.